共查询到2条相似文献,搜索用时 15 毫秒
1.
Guarnieri V Gaia E Battocchio L Pitzurra M Savino A Pasquarella C Vago T Cotronei V 《Acta Astronautica》1997,40(2-8):195-201
Experiment T2, carried out during the Euromir'95 mission, was an important step toward innovative methods for spacecraft microbial contamination monitoring. A new standard sampling technique permitted samples to be analysed by different means. On board, two analysis methods were tested in parallel: Bioluminescence and Miniculture. In turn, downloaded samples are being analysed by polymerase chain reaction (PCR), a powerful and promising method for the rapid detection, identification and quantification of pathogens and biofouling agents in closed manned habitats. 相似文献
2.
The use of oxygen produced on the Moon—called “MOONLOX”—is considered as a propellant component for a reusable Earth-Moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed and the processing concept of a lunar oxygen plant based on fluorination is presented. It is shown that the necessary mass of supply from Earth for MOONLOX-production is an important parameter, which may not be neglected due to its strong influence on the economy. In the ideal case where no supplies from Earth are required a reduction of up to 50% in masses to be launched into low Earth orbit can be obtained for a typical lunar mission with use of MOONLOX compared to a reference scenario with Earth-derived propellant. Mass-saving decreases, however, significantly with increasing supply from Earth until a critical supply-rate is reached—measured in percentage of MOONLOX-mass produced and consumed—beyond which mass-saving and thus economically promising lunar oxygen production is no longer possible. This critical supply-rate depends on the scenario for MOONLOX-utilization and is much larger in the case of in situ use of MOONLOX on the lunar surface, e.g. as ascent propellant for the lunar bus, than in the case of export for complete refuelling of both space vehicles. The latter scenario therefore requires significantly more autonomy for MOONLOX-production. The reduction of masses to be transported into low Earth orbit and corresponding MOONLOX-consumption define for given specific Earth-to-LEO transportation costs an upper limit on MOONLOX-production costs beyond which economic benefit is not possible. Depending on the MOONLOX-utilization strategy this upper limit varies between 3000 and 55000 $/kg for current Earth-to-LEO transportation costs. 相似文献