首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In London on 20 September, the British National Space Centre and the Royal Astronomical Society convened a ‘Town Meeting’, a usage picked up from NASA. Basically it was a debate without the competetive element, whose topic was the next two of the European Space Agency's four ‘Cornestone’ projects for the ‘Horizon 2000’ programme, total budget 584 million ECU (about £467 million). The question in September was which would be no. 3 and which no. 4. Duncan Lunan reports on the discussion and the choices made.  相似文献   

2.
Colin Hicks CB   《Acta Astronautica》2009,65(11-12):1593-1598
In all developed countries, once it emerged from the amateur era, Space (and especially rocketry) moved on the public agenda because of its potential significance for both the civil and military policies of governments (coupled with its appetite for new money). In the UK the policy treatment of Space broadly paralleled that in other countries until the post-Empire trauma, the burn-out of the White-Hot Technological revolution of Harold Wilson, and the financial crises of the 1970s exhausted the public appetite for large scale publicly funded projects in high technology. The culmination for Space of these pressures came in 1986–1987 when the UK rejected the emerging international consensus and, almost alone, stayed outside the manned space commitments which developed into the International Space Station. In this paper, Colin Hicks will review the UK political developments which led up to the 1986–1987 decision and how the politics and organisation of UK space activity have developed since then to the point where in 2008 a major government review of the UK involvement in manned space was commissioned.  相似文献   

3.
The author argues that students attending the International Space University (ISU) are becoming a force to be reckoned with in space activities thanks to their enthusiasm, dedication and their Design Projects tackling major technological issues. This article reviews previous projects, before focusing on those of 1993 and 1994, and analyses whether they can be seen as agents for change in space policy making. Key ‘selling points’ are the ‘students’ non-rigid approach to thinking and doing, their refusal to believe in the intractability of any problem and the appeal their novel coalition may have for political leaders.  相似文献   

4.
Atsuyo Ito 《Space Policy》2005,21(2):14-149
The 2000 Disaster Charter initiated by the European Space Agency and the Centre National d’Etudes Spatiales is the first international mechanism to universally share remote sensing-derived information and knowledge for disaster management. It is an extensive international cooperative effort among space agencies to provide space-based assets to communities world-wide that are afflicted by disasters. After four years of operations, the Charter has successfully provided disaster relief to a number of afflicted states. Simultaneously, some deficiencies in its operational and legal provisions have been highlighted. The Charter can serve as a good case study to gain understanding of the current state and further challenges of Earth observations (EO). The purpose of this paper is to show what has been achieved through Charter operation, and to examine user requirements of EO, and what needs to be changed to serve them better.  相似文献   

5.
ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by “ARSENE students” in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.  相似文献   

6.
Alexander Bolonkin   《Acta Astronautica》2008,62(10-11):577-591
The author offers a revolutionary method—non-rocket transfer of energy and thrust into Space with a distance of millions of kilometers. The author has developed the theory and made the computations. The method is more efficient than transmission of energy by high-frequency waves. The method may be used for space launch and for accelerating the spaceship and probes for very high speeds, up to a relativistic speed by the current technology. The research also contains prospective projects which illustrate the possibilities of the suggested method.  相似文献   

7.
In a little over four decades, the Indian Space Program has carved a niche for itself with the unique application driven program oriented towards National development. The end-to-end capability approach of the space projects in the country call for innovative practices and procedures in assuring the quality and reliability of space systems. The System Reliability (SR) efforts initiated at the start of the projects continue during the entire life cycle of the project encompassing design, development, realisation, assembly, testing and integration and during launch. Even after the launch, SR groups participate in the on-orbit evaluation of transponders in communication satellites and camera systems in remote sensing satellites. SR groups play a major role in identification, evaluation and inculcating quality practices in work centres involved in the fabrication of mechanical, electronics and propulsion systems required for Indian Space Research Organization's (ISRO's) launch vehicle and spacecraft projects. Also the reliability analysis activities like prediction, assessment and demonstration as well as de-rating analysis, Failure Mode Effects and Criticality Analysis (FMECA) and worst-case analysis are carried out by SR groups during various stages of project realisation. These activities provide the basis for project management to take appropriate techno-managerial decisions to ensure that the required reliability goals are met. Extensive test facilities catering to the needs of the space program has been set up. A system for consolidating the experience and expertise gained for issue of standards called product assurance specifications to be used in all ISRO centres has also been established.  相似文献   

8.
This document outlines the objectives, strategy guidelines, and the approach for the harmonisation of European space technology activities, in line with and in support of the resolution “Shaping of the Future of Europe in Space”, adopted at the ESA Ministerial Council in May 1999.Under an overall ESA co-ordination, the European space sector is elaborating a technology strategy based on top-level priorities (Dossier 0), on the mapping of European development and competences and on a co-ordinated Space Technology Master Plan (ESTMP). This plan shall take into account the various European developments, industry capacities and budgets and shall enhance the complementary role of the various partners towards common objectives.The proposed strategy includes selection of priority activities as pilot projects for harmonisation. For these pre-selected pilot projects, agreements are required on responsibilities, leaderships, partnerships and budget commitments.  相似文献   

9.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   

10.
Poland has a long-standing tradition in space activities. Polish institutions have participated as co-investigators in almost all European Space Agency (ESA) science projects, as well as on many other missions. However, the first Polish satellite (PW-SAT) was only launched in 2012. Poland was one of the first Eastern European countries to conclude a Cooperation Agreement with ESA in the peaceful use of outer space; it was signed in 1994 and followed by a second in January 2002. Negotiations on Polish membership in the ESA were started in autumn of 2011, and ended in April 2012. Following ratification of the agreement, Poland officially became the 20th Member State of ESA on 19 November 2012. This article examines how Poland is setting its way as a space nation. It describes recent developments in the Polish space programme, including the road to Poland's full membership in the European Space Agency.  相似文献   

11.
This article outlines the principles upon which international space law is based. Space law has been successful so far in benefiting the developing countries without hampering the spacefaring nations. The principal treaty provisions that are of special interest to developing nations are discussed, and issues associated with remote sensing, communications and environmental harms are examined in detail. Since 1967 there has been a sharp change in the focus of legal concern towards ‘taking into account the particular needs of developing countries’, a principle that will be central to arrangements for the equitable sharing of the benefits of exploiting the space environment and its natural resources.  相似文献   

12.
《Acta Astronautica》1987,15(9):725-729
During the next eight years the United States, European countries within the European Space Agency, Canada, and Japan will engage in the design and construction of facilities included in the current conceptual design of the U.S./International Space Station. The object will be to build a manned space facility capable of supporting scientific research, technological development, and commercial operations. This paper is directed towards an overview of the essential requirements for successful scientific use of the Space Station. Because specific supporting technologies will change so drastically before heavy use can begin, it is important to discuss the most fundamental aspects of user requirements; namely, (1) What are the characteristics of a remote, manned space facility that can promote first rate scientific use? (2) What does it take to achieve such a facility, and (3) What guidelines can be given such that once the facility is in operation it attracts the best possible scientific talent?  相似文献   

13.
Space research in Pakistan is conducted by the Pakistan Space and Upper Atmosphere Research Commission (Suparco). Suparco's programmes consist of the launching of sounding rockets and satellite applications, especially remote sensing and communications. Its long-term goals are to develop communications and remote sensing satellites and to launch lightweight scientific satellites in near-Earth orbits. To train its scientific staff at postgraduate level, Suparco is establishing an Aerospace Institute. The Commission is very active in international forums such as the UN COPUOS, Cospar, IAF and IUCN.  相似文献   

14.
Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal.With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world.Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses.Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme.Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation (ISRO) is already a part of the International initiative called Satellite Aided Search and Rescue System.The programme to set up satellite-based Village Resource Centres (VRCs) across India, for providing a variety of services relevant to the rural communities, is also a unique societal application of space technology. The VRCs are envisaged as single window delivery mechanism for a variety of space-based products and services, such as tele-education; telemedicine; information on natural resources for planning and development at local level; interactive advisories on agriculture, fisheries, land and water resources management, livestock management, etc.; interactive vocational training towards alternative livelihood; e-governance; weather information; etc.This paper describes the various possibilities and potentials of Satcom and Remote Sensing technologies for societal applications. The initiatives taken by Indian Space Research Organisation in this direction are highlighted.  相似文献   

15.
“和平”号空间站由6个相继发射的舱体对接而成,其中的自然舱为一遥感舱,装有各种类型的遥感器,主要用来增强“和平”号空间站的地球遥感能力,研究地球生态状况。文章对这些仪器逐一介绍。  相似文献   

16.
Vera Mayorova  Kirill Mayorov   《Acta Astronautica》2009,65(9-10):1393-1396
Current educational system is facing a contradiction between the fundamentality of engineering education and the necessity of applied learning extension, which requires new methods of training to combine both academic and practical knowledge in balance. As a result there are a number of innovations being developed and implemented into the process of education aimed at optimizing the quality of the entire educational system. Among a wide range of innovative educational technologies there is an especially important subset of educational technologies which involve learning through hands-on scientific and technical projects. The purpose of this paper is to describe the implementation of educational technologies based on small satellites development as well as the usage of Earth remote sensing data acquired from these satellites. The increase in public attention to the education through Earth remote sensing is based on the concern that although there is a great progress in the development of new methods of Earth imagery and remote sensing data acquisition there is still a big question remaining open on practical applications of this kind of data. It is important to develop the new way of thinking for the new generation of people so they understand that they are the masters of their own planet and they are responsible for its state. They should desire and should be able to use a powerful set of tools based on modern and perspective Earth remote sensing. For example NASA sponsors “Classroom of the Future” project. The Universities Space Research Association in United States provides a mechanism through which US universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology, and to promote education in these areas. It also aims at understanding the Earth as a system and promoting the role of humankind in the destiny of their own planet. The Association has founded a Journal of Earth System Science Education. Authors describe an effective model of educational technology developed in the Center for Earth Remote Sensing of Bauman Moscow State Technical University and based on scientific and educational organizations integration in the field of applied studies. The paper also presents how students are being trained to acquire and process satellite imagery data from Terra and Aqua satellites. It also reveals the results of space monitoring for Russia's ecologically complex regions conducted by Bauman Moscow State Technical University students in cooperation with specialists from the Laboratory for Aerospace Methods of Moscow State University named after M. Lomonosov.  相似文献   

17.
The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.  相似文献   

18.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

19.
The Space Agency Forum (SAF) met for its 10th plenary meeting in Bremen on 30 September 2003. Its motto was “Space Agencies and the UN System”. Following various presentations on relevant issues, including the UN Space Applications Programme and the follow-up of UNISPACE III, SAF members discussed their participation in these fields. The meeting resulted in a number of inputs to these issue areas and coordinated approaches vis-à-vis policy questions.  相似文献   

20.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号