首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   

2.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   

3.
Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust “cycle” have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS + impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.  相似文献   

4.
5.
The Canadian Space Agency (CSA) has proposed a Polar Communications and Weather (PCW) satellite mission, in conjunction with other partners. The PCW will provide essential communications and meteorological services to the Canadian Arctic, as well as space weather observations of in situ ionizing radiation along the orbit. The CSA has identified three potential Highly Elliptical Orbits (HEOs) for a PCW satellite constellation, Molniya, Modified Tundra and Triple Apogee (TAP), each having specific merits, which would directly benefit the performance/longevity of a PCW spacecraft. Radiation shielding effectiveness of various materials was studied for the three PCW orbit options to determine the feasibility of employing materials other than conventional aluminium to achieve a specified spacecraft shielding level with weight savings over aluminium. It was found that, depending on the orbit-specific radiation environment characteristics, the benefits of using polyethylene based materials is significant enough (e.g., 22% in Molniya for PE at 50 krad TID) to merit further investigation.  相似文献   

6.
Comprehensive study of the dose, flux and deposited energy spectra shape data obtained by Liulin type spectrometers on spacecraft (five different experiments) and aircraft since 2001 is performed with the aim of understanding how well these parameters can characterize the type of predominant particles and their energy in the near Earth radiation environment. Three different methods for characterisation of the incoming radiation from Liulin spectrometers are described. The results revealed that the most informative one is by the shape of the deposited energy spectra. Spectra generated by Galactic Cosmic Rays (GCR) protons and their secondaries are with linear falling shape in the coordinates deposited energy/deposited per channel dose rate. The position of the maximum of the deposited energy spectra inside the South Atlantic Anomaly (SAA) region depends on the incident energy of the incoming protons. Spectra generated by relativistic electrons in the outer radiation belt have a maximum in the first channels. For higher energy depositions these spectra are similar to the GCR spectra. Mixed radiation by protons and electrons and/or bremsstrahlung is characterized by spectra with 2 maxima. All type of spectra has a knee close to 6.2 MeV deposited energy, which correspond to the stopping energy of protons in the detector. Dose to flux ratio known also as specific dose is another high information parameter, which is given by experimentally obtained formulae [Heffner, J. Nuclear radiation and safety in space. M. Atomizdat. 115, 1971 (in Russian)] connecting the dose to flux ratio and the incident energy of the particles.  相似文献   

7.
We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved.  相似文献   

8.
The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200–400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3–4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed.  相似文献   

9.
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location.  相似文献   

10.
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose–response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose–response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose–response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.  相似文献   

11.
The life on Mars remains an open question because of the lack of proof of its past emergence and its current presence. The only indices of a potential Martian life were provided by the Viking Landers, and the study of the Martian meteorite ALH84001 discovered in the Antarctic. In the two case, the results of experiments could be explained either by the presence of life forms or by abiotic processes. The recent data of Mars Express orbiter and Mars Exploration Rovers show different proofs of a past environment favourable for life. Among the targets we seek, the organic molecules are primordial because they are necessary to the origin of life. A key question is to know if they are present, in which concentration and under which form. Within the framework of a search for organic, we are developing an experimental setup simulating as close as possible the environmental conditions of Mars surface in order to determine how organic species evolve. We present here the first step of the development of this experiment which focuses on the study of the impact of the solar UV radiations reaching the Mars surface on glycine. First results show that glycine does not resist if directly exposed to UV radiations.  相似文献   

12.
Radiation hazard for space missions is mainly due to cosmic ray protons, helium nuclei and light ions, whose energy spectrum is maximum around 1 GeV per nucleon but remains non-negligible for energies up to 15 GeV per nucleon. Nuclear reactions induced by high energy protons are often described by intranuclear cascade plus evaporation models. The attention is focused here on the Liège Intranuclear Cascade model (INCL), which has been shown to reproduce fairly well a great deal of experimental data for nucleon-induced reactions in the 200 MeV to 2 GeV range, when coupled with the ABLA evaporation-fission code. In order to extend the model to other conditions relevant for space radiation, three improvements of INCL are under development. They are reported on here. First, the reaction model has been extended to nucleon–nucleus reactions at incident energies up to 15 GeV, mainly by the inclusion of additional pion production channels in nucleon–nucleon collisions during the cascade. Second, a coalescence mechanism for the emission of light charged particles has been implemented recently. Finally, the model has been modified in order to accommodate light ions as projectiles. First results are shown and compared with illustrative experimental data. Implications for issues concerning radiation protection in space are discussed.  相似文献   

13.
The RADiatiOn Monitor (RADOM) is a miniature dosimeter-spectrometer that flew onboard the Chandrayaan-1 lunar mission in order to monitor the local radiation environment. Primary objective of the RADOM experiment was to measure the total absorbed dose, flux of surrounding energetic particles and spectrum of the deposited energy from high energy particles both en-route and in lunar orbit. RADOM was the first experiment to be switched on after the launch of Chandrayaan-1 and was operational until the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time (22 October 2008–31 August 2009) of the Chandrayaan-1 mission and compares the measurement by RADOM with the radiation belt models such as AP-8, AE-8 and CRRESS.  相似文献   

14.
In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.  相似文献   

15.
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.  相似文献   

16.
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE’s material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications.  相似文献   

17.
火星大气对太阳辐射产生吸收和散射作用,同时还将与火星表面航天器发生对流换热.热设计时难以直接评估对流、辐射和导热三种换热对航天器的影响,从而确定主要的控温途径.在调研火星表面辐射、大气等热环境的基础上,从线性化传热系数和对流辐射比的角度对比分析了辐射、对流和导热对航天器的影响.器表辐射传热系数随光学属性和温度的变化范围...  相似文献   

18.
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 ? Z ? 28 (H–Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm2 spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE.  相似文献   

19.
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.  相似文献   

20.
The radiation environment at the altitude of the International Space Station (ISS) is substantially different than anything typically encountered on Earth in both the character of the radiation field and the significantly higher dose rates. Concerns about the biological effects on humans of this highly complex natural radiation field are increasing due to higher amount of astronauts performing long-duration missions onboard the ISS and especially if looking into planned future manned missions to Mars. In order to begin the process of predicting the dose levels seen by the organs of an astronaut, being the prerequisite for radiation risk calculations, it is necessary to understand the character of the radiation environment both in- and outside of the ISS as well as the relevant contributions from the radiation field to the organ doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号