首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper is a review of our observational knowledge on solar magnetic fields. In Section 1 we make an attempt to summarize all observations of the general magnetic field (m.f.) of the Sun. Section 2 deals with the local m.f. at low latitudes and their connection with some features on the disk. The m.f. of sunspots and their peculiar character are considered in Section 3. The last section (4) is concerned with m.f. in sunspot groups, their changes and connections with solar activity.  相似文献   

3.
4.
A review is given of both observational and theoretical results concerning the latitudinal structure of the solar wind and interplanetary magnetic field. Observations are reported on the solar wind plasma and magnetic fields, obtained both from direct satellite measurements and indirect methods, such as the observation of comet tails, radio scintillations, the study of the polar geomagnetic field and the semi-annual variation of geomagnetic activity. Results of theoretical work, both on three-dimensional modelling of the solar wind and on gas-magnetic field interactions in the solar corona are summarized. Finally, an attempt is made to compare available observations and theories. This points to the open questions which, to be settled, will need direct observations of plasma and magnetic field at high heliographic latitudes.  相似文献   

5.
The development of currents within an arbitrary distribution of particles trapped in the geomagnetic field is described. These currents combine to form the earth's ring current and thus are responsible for the worldwide depressions of surface magnetic field strength during periods of magnetic activity known as magnetic storms. Following a brief review of trapped particle motion in magnetic fields, ring current development is described and presented in terms of basic field and particle distribution parameters. Experimental observations then are presented and discussed within the theoretical framework developed earlier. New results are presented which, in the area of composition and charge state observations, hold high promise in solving many long standing ring current problems. Finally, available experimental results will be used to assess our present understanding as to ring current sources, generation, and dissipation.  相似文献   

6.
A solar flare is a violent and transient release of energy in the corona of the Sun, associated with the reconfiguration of the coronal magnetic field. The major mystery of solar flare physics is the precise nature of the conversion of stored magnetic energy into the copious accelerated particles that are observed indirectly by the radiation that they produce, and also directly with in situ detectors. This presents a major challenge for theory and modeling. Recent years have brought significant observational advances in the study of solar flares, addressing the storage and release of magnetic energy, and the acceleration and propagation of fast electrons and ions. This paper concentrates on two topics relevant to the early phase of a flare, magnetic reconnection and charged particle acceleration and transport. Some recent pertinent observations are reviewed and pointers given for the directions that, this reviewer suggests, computational models should now seek to take.  相似文献   

7.
A review is given of observational results concerning the solar cycle dependence of the global structure of solar wind speed distribution during the years from 1973 to 1987. Since observations of solar wind speed in 3-dimensional space can only be made by the interplanetary scintillation method which has been carried out over one sunspot activity cycle since the early 1970's, the review is based on IPS observations. The low-speed regions tend to be distributed along neutral lines which are derived on the source surface, so comparisons between speed distribution and the neutral line are discussed.  相似文献   

8.
As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described.  相似文献   

9.
10.
Yong Lin 《Space Science Reviews》2011,158(2-4):237-266
Thanks to gradually improving observational capabilities, both from space and ground-based observatories, it is now generally accepted that thin threads (width ??200 km) constitute the building blocks of solar filaments and prominences. At ultra-small scales, high quality image sequences show a non-static picture of filaments and reveal that their oscillatory behavior is an important dynamic feature of these structures. Filament seismology sheds light on the internal magnetic structures of filaments and their interactions with surrounding solar regions. Understanding the overall magnetic topology of solar filaments and prominences including their small-scale thread-like structures is essential in interpretation and understanding of their oscillations. For this reason we aim here to present an update of the dynamic and spatial structures of prominences and filaments as inferred from high resolution observations in the past decennia. Some constraints in high resolution observations are addressed. Our review focuses mainly on the observational aspects and aims to summarize recent oscillation studies of individual filament threads and groups of threads. Finally, some theoretical interpretations of oscillations of filament threads and the inferred physical conditions of filament plasma are also discussed.  相似文献   

11.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

12.
This paper reviews solar flows and magnetic fields observed at the photospheric level. We first present the context in which these observations are performed. We describe the various temporal and spatial scales involved, and the coupling between them. Then we present small-scale flows, mainly supergranulation and flows around active regions. Flows at the global scale are then reviewed, again with emphasis on the flows, i.e. differential rotation, torsional oscillation and meridional circulation. In both small- and global-scale we discuss the coupling between flow fields and magnetic field and give an overview of observational techniques. Finally, the possible connection between studies of solar activity and stellar activity is briefly discussed.  相似文献   

13.
Book reviews     
The general significance of streamers of the solar corona is discussed in the frame of our knowledge of the solar wind phenomenon and the large-scale solar magnetic structure. Thermodynamical and geometric parameters of streamers observed and measured at total solar eclipses are reviewed. Both the low part (in the form of a helmet with a cusp) and the external part (in the form of a stalk extended at many solar radii) are considered. The modelling of streamers starts with the analysis of effects produced by the solar wind flow on a magnetic structure. Facts and arguments are presented in favor of a model with a current sheet and reconnection processes going on along the axis of the streamer, especially in the non-collisional part of the radially extended streamer. Further development of the Pneuman and Kopp (1971) model is discussed, including difficulties occurring in the interpretation of a stationary solution. An empirical model satisfying observations is presented. Future researchs on streamers were discussed with emphasis on observations to be done with the space-borne coronagraphs on the SOHO spacecraft.  相似文献   

14.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   

15.
An overview is given of the observational and the theoretical methods used to investigate solar magnetic fields. It includes an introduction to the Stokes parameters, their radiative transfer in the presence of a magnetic field, and empirical techniques used to measure various properties of solar magnetic features, such as the strength and direction of the magnetic field, magnetic flux, temperature, velocity, size and lifetime. The MHD equations are introduced and some of the most common simplifications used to describe solar magnetic features are outlined.The application of these techniques to small-scale magnetic features is surveyed. The results of empirical and theoretical investigations of small-scale solar magnetic features are reviewed. Current views on their magnetic structure, thermal stratification, velocity field, size, distribution and evolution are presented. Finally, some open questions concerning small-scale solar magnetic fields are listed.  相似文献   

16.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

17.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance variations to solar surface magnetism. Here we review the current status of solar irradiance measurements and modelling efforts based on solar photospheric magnetic fields. Thereby we restrict ourselves to the study of solar variations from days to the solar cycle. Phenomenological models of the solar atmosphere in combination with imaging observations of solar electromagnetic radiation and measurements of the photospheric magnetic field have reached high enough quality to show that a large fraction (at least, about 80%) of the solar irradiance variability can be explained by the radiative effects of the magnetic activity present in the photosphere. Also, significant progress has been made with magnetohydrodynamic simulations of convection that allow us to relate the radiance of the photospheric magnetic structures to the observations.  相似文献   

19.
Spacecraft observations have established that all known planets with an internal magnetic field, as part of their interaction with the solar wind, possess well-developed magnetic tails, stretching vast distances on the nightside of the planets. In this review paper we focus on the magnetotails of Mercury, Earth, Jupiter and Saturn, four planets which possess well-developed tails and which have been visited by several spacecraft over the years. The fundamental physical processes of reconnection, convection, and charged particle acceleration are common to the magnetic tails of Mercury, Earth, Jupiter and Saturn. The great differences in solar wind conditions, planetary rotation rates, internal plasma sources, ionospheric properties, and physical dimensions from Mercury’s small magnetosphere to the giant magnetospheres of Jupiter and Saturn provide an outstanding opportunity to extend our understanding of the influence of such factors on basic processes. In this review article, we study the four planetary environments of Mercury, Earth, Jupiter and Saturn, comparing their common features and contrasting their unique dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号