首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphine (PH3) 1 has been observed in the atmospheres of Jupiter and Saturn. We have studied the photochemical reactions of this compound with acetylene (C2H2), an alkyne also detected in these atmospheres. The volatile products formed in these reactions were characterized by H, 31P and 13C NMR. The ethenylphosphine 2 is the first product formed in the photolysis of PH3 in the presence Of C2H2. Photolysis of PH3 in the presence of propyne (C3H4) led to the formation of the Z- and E-prop-1-enylphosphines and traces of 1-methylethenylphosphine. A reaction pathway is proposed. The initial step is the dissociation of PH3 to hydrogen and PH2 radicals. Addition of the phosphinyl radical on alkyne occurs as the next step. Vinylphosphines are then formed by radical combination. This proposed reaction pathway takes into account the nature of the products and studies devoted to the photolysis of germane (GeH4) or hydrogen sulfide (H2S) in the presence of alkyne. Attempts to detect the methylidynephosphine HC triple bond P (the isoelectronic compound of HC triple bond N), in the photolysis products of PH3-C2H2 mixtures were unsuccessful. The application of these findings to Jovian and Saturn atmospheric chemistry is discussed.  相似文献   

2.
Cyanobutadiyne has been synthesized starting from the mono or bistributylstannyl derivative of 1,3-butadiyne and p-toluenesulfonyl cyanide. The UV spectrum of HC5N and the 13C NMR spectrum of the deuterocyanobutadiyne DC5N have been recorded for the first time. Cyanobutadiyne has been detected in the photolysis of mixtures of gases observed on Titan. Its formation starting from cyanoacetylene and acetylene also occurs in the presence of huge amounts of dinitrogen, the major constituent of the Titan’s atmosphere. The application of these findings to the atmosphere of Titan is discussed. The chemistry and photochemistry of cyanobutadiyne have been investigated. A photoadduct has been observed in the photolysis of cyanoacetylene and ethanethiol and, a univocal synthesis of this compound was performed by a nucleophilic addition reaction.  相似文献   

3.
The photolysis of mixtures of gases containing NH3 or PH3 presents important differences mainly due to the strength of the X-H bond. On some examples, these differences are evidenced and the consequences for mixtures of gases containing these two compounds are shown: the photolysis of ammonia and ethylene mainly gives ethyl-, butyl- and hexylamine whereas the photolysis of phosphine and ethylene leads to ethyl- and vinylphosphine. When gaseous mixtures of NH3, PH3 and ethylene are photolyzed together, the presence of phosphine dramatically decreases the formation of nitrogen derivatives. The relevance of such lab studies to the atmospheres of Jupiter and Saturn is discussed.  相似文献   

4.
Aqueous solutions of 5-substituted hydantoins were irradiated with ultraviolet (UV) light, to investigate their structural stability against UV radiation as well as the possible photolysis products. The photolysis products were identified and the degree of photolysis was measured using reversed-phase and ion-exchange high-performance liquid chromatography. Hydantoin (2,4-imidazolidinedione) was dominantly detected as a photolysis product of 5-substituted hydantoins. With hydrolysis of UV-irradiated 5-substituted hydantoins, glycine and alanine were dominantly detected. These experimental results are important for the prebiotic photochemistry of 5-substituted hydantoins in the formation of hydantoin since they have been detected in Solar System materials.  相似文献   

5.
The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species in Titan, the predicted abundance of ethene is to low by a factor of 10 to 40. While some ethene will be produced by charged-particle chemistry, its production by corona processes and subsequent diffusion into the stratosphere appears to be an adequate source. Because little UV penetrates to the lower atmosphere to destroy the molecules formed there, the corona-produced species may be long-lived and contribute significantly to the composition of the lower atmosphere and surface.  相似文献   

6.
With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5′AMP, 0.41% for 2′(3′)AMP, 0.20 for 2′3′cAMP; in case of deoxyadenosine 0.13% for 5′dAMP, 0.15% for 3′dAMP, 0.24% for 3′5′cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5′AMP and 5′dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.  相似文献   

7.
Results are presented from two-year simulations of the effects of short-term solar ultraviolet (UV) variability using the Met. Office coupled chemistry-climate model. The model extends from the ground to 0.1 mbar and contains a complete range of chemical reactions allowing representation of all the main ozone formation and destruction processes in the stratosphere. The simulations were achieved by incorporating a 27-day oscillation in the pre-calculated model photolysis rates. Amplitudes for this signal were determined using solar spectral UV observations from the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) instrument. Two experiments were carried out, one in which the UV variability was included in both the photolysis and radiation schemes and one in which only the photolysis scheme was modified.

The model reproduced several main features of observed correlations between short-term solar UV variability and both ozone and temperature in the tropical upper stratosphere, including the downward propagation of the phase lag and sensitivities of ozone and temperature to solar UV which are similar in magnitude to those observed. In the lower stratosphere, the ozone response to solar UV variability has not been well characterised from observations. Both model runs show a reversal of the propagation of phase lag below 10mb. The model response was found to be different between the two runs indicating that radiatively induced dynamical effects may play a significant role in the ozone response to solar UV variability.  相似文献   


8.
The dust population at 1 AU is known for all sizes between μm and cm to an accuracy better than one order of magnitude. It was observed by Helios that the fine grained dust (μm to 100 μm) decreases with increasing sun distance ∞ r?1.3, at least between 0.3 and 1 AU /1/.Two Pioneer 1011 dust experiments observed the dust distribution beyond 1 AU in the 10 to 100 μm diameter size range for the first time directly with contradicting results. The penetration experiment saw a constant flux out to 20 AU while the optical experiment observed a decrease of the dust number densities until 3.3 AU, but no scattered light was recorded further out. An attempt is made to explain these observations on the basis of the socalled ‘Greenberg’-particles: cometary core/mantle grains with organic mantle material. The observed enhancement of the dust flux by 1 or 2 orders of magnitudes near Jupiter and Saturn are interpreted as being caused by gravitational focussing, ejecta from jovian/saturnian satellites and electrostatic fragmentation products.  相似文献   

9.
A total of 3600 spectra of Comet Halley in the 275–710 nm were obtained on March, 8, 9, 10 and 11, 1986, from the VEGA 2 spacecraft. The emissions of OH, NH, CN, C3, CH, C2, NH2 and H2O+ are identified. From the OH intensity in the (0,0) band: 1.1 Megarayleigh at 5400 km from the nucleus, it can be inferred that the OH production rate was (1.4 ± 0.5)×1030 molecules s−1. The NH, C3, CH and NH2 bands became comparatively more intense at distances from the nucleus shorter than 3000km. At 06:40 U.T. when the instrument field of view was 6000×4500 km, two jets were observed. Spectra from the jets show significant differences with other spectra. Inside a jet NH, C3 and NH2 are comparatively more intense and the rotational distributions of OH, CN and C2 are strongly distorted. This shows that part of the observed emissions probably comes from radicals directly produced in the excited state during the initial process of photolysis of the parent molecules.  相似文献   

10.
月球表面的辐射剂量是影响航天员安全和月表驻留时间的重要参数,通过对月表的粒子辐射测量可以为航天员的辐射安全防护提供重要依据.利用嫦娥四号着陆器上搭载的月表中子与辐射剂量探测仪二年的观测数据得到:月表粒子辐射在硅中的平均总吸收剂量率为12.66±0.45μGy·h-1,中性粒子吸收剂量率为2.67±0.16μGy·h-1.辐射剂量率随时间出现缓慢的下降,LET谱的变化则很小.同时观测到了2020年12月太阳活动末期由于银河宇宙线福布斯下降导致的辐射剂量率降低.   相似文献   

11.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

12.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

13.
In various models of interstellar grain chemistry, solid O2 is formed by accretion as well as by surface reactions on grains. In dense molecular cloud models, at a later stage of the evolution, the O2 molecule may become a substantial grain mantle constituent. Since IR dipole vibrational transitions for the homonuclear diatomic molecule O2 are forbidden, the abundance of this potentially important grain mantle component can not be determined. However, embedded in a dirty ice matrix, the fundamental vibration of O2 at 1550 cm−1 becomes observable at 10 K, due to interactions with surrounding molecules, which break the symmetry of molecular oxygen. This process might be applicable for the dust mantle environment of interstellar grains. We have studied the role of solid O2 and O3 in astrophysically relevant ice mixtures and discuss the possible detection of solid O2 and its major photolysis product O3 in interstellar grains, in dense molecular clouds. Both molecules represent a specific target to be observed by the ISO satellite in the near future.  相似文献   

14.
An understanding of observed global chemistry and climate changes caused by solar activity changes is a high priority in modern geosciences. Here, we discuss the influence of the ultraviolet spectral irradiance variability during solar cycle on chemical composition of the stratosphere and mesosphere with chemistry-climate model that fully describes the interactions between chemical and thermo-dynamical processes. We have performed several 20-year long steady-state runs and found a significant influence of solar irradiation on the chemical composition in the stratosphere and mesosphere. An enhanced photolysis during solar maximum results in destruction of methane, nitrous oxide and CFCs providing an increase in the chemical activity of the atmosphere with more pronounced effects in the mesosphere. In the mesosphere, an increase of HOx caused by more intensive water vapor photolysis results in significant ozone depletion there. More intensive methane oxidation gives statistically significant rise to the stratospheric humidity. The influence of dynamical perturbations has been identified over high latitude areas. The response of OH is found to be in a good agreement with observation data. The response of the other species is hard to validate, because of the lack of theoretical and observational studies.  相似文献   

15.
In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 micromoles/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing.  相似文献   

16.
We discuss the contributions of cosmic rays and imbedded radionuclides to the absorbed doses and the chemistry in a cometary nucleus. Some of recently made observations during the close encounter with comet Halley are considered in the light of radiation dosimetry and chemistry.  相似文献   

17.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

18.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAH) in the form of polymerized derivatives represent over 90% of the organic material of carbonaceous chondrites. It now appears likely that there was substantial survival of the organic content of meteoritic and cometary infall during late accretion, so that PAH would presumably be major components of the organic inventory present on the prebiotic Earth. An important question relative to chemical evolution and energy transduction is the nature of pigments which could be available to make light energy available to the earliest cellular forms of life. PAH and their derivatives all absorb light in the near UV and blue wavelengths, and are candidates for primitive pigments. We have explored this possibility in a model system consisting of mixtures of pyrene, fluoranthene and pyrene derivatives with hexadecane, dispersed in dilute salt solutions. Upon illumination, photochemical oxidation of the hexadecane occurs, with long-chain amphiphiles such as 2-hexadecanone and 2-hexadecanol as products. Because the reaction proceeds under strictly anaerobic conditions, the source of oxygen is apparently water. We also observed acid pH shifts during illumination. Photochemical production of hydrogen ion is significant, in that chemiosmotic proton gradients across membranes are used by all contemporary cells as a source of energy for ATP synthesis and nutrient transport. To test whether the protons could be used to transduce light energy into a useful form, PAH derivatives were included in lipid bilayer membranes (liposomes). Upon illumination, protons (or acidic products) were produced and accumulated inside the vesicles, so that substantial pH gradients were established across the membranes, acid inside. We conclude that PAH dissolved in aliphatic hydrocarbons absorb light energy and use it to oxidize the hydrocarbon to long-chain amphiphilic molecules. The oxidation is accompanied by release of protons. If PAH derivatives are included in the bilayer membrane of lipid vesicles, protons accumulate within the membrane-bounded volumes to form proton gradients. This system provides a useful model of a primitive photochemical reaction in which light energy is transduced into potentially useable forms.  相似文献   

20.
The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR spacestation during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号