首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of Alfvén waves generated in the photosphere by field lines trapped in vortex sinks and propagating upwards through the transition region and corona are discussed and contrasted to those of waves generated via reconnection in transition region explosive events, or rather via untwisting reconnecting flux tubes. An outline for future simulations and theoretical advances necessary to understand the dynamics of spicules and macrospicules is described, and a detailed search for photospheric velocity patterns underlying macrospicules is suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
M. Ugai 《Space Science Reviews》2001,95(1-2):601-611
Large dissipative events, such as solar flares and geomagnetic substorms, may result from sudden onset of fast (explosive) magnetic reconnection. Hence, it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive; in particular, how can the fast magnetic reconnection explosively evolve in space plasmas? In this respect, we have proposed the spontaneous fast reconnection model as a nonlinear instability that grows by the positive feedback between plasma microphysics (anomalous resistivity) and macrophysics (global reconnection flow). On the basis of MHD simulations, we demonstrate for a variety of physical situations that the fast reconnection mechanism involving slow shocks in fact evolves explosively as a nonlinear instability and is sustained quasi-steadily on the nonlinear saturation phase. Also, distinct plasma processes, such as large-scale plasmoid propagation, magnetic loop development and loop-top heating, and asymmetric fast reconnection evolution, directly result from the spontaneous fast reconnection model. Obviously, MHD simulations are very useful in understanding the basic physics of explosive fast reconnection evolution in space plasmas. However, they cannot treat the details of microphysics near an X neutral point, which should be precisely studied in the coming 21st century.  相似文献   

3.
Coronal loops are heated by the release of stored magnetic energy and by the dissipation of MHD waves. Both of these processes rely on the presence of internal structure in the loop. Tangled or sheared fields dissipate wave energy more efficiently than smooth fields. Also, a highly structured field contains a large reservoir of free magnetic energy which can be released in small reconnection events (microflares and nanoflares). The typical amount of internal structure in a loop depends on the balance between input at the photosphere and dissipation. This paper describes measures of magnetic structure, how these measures relate to the magnetic energy, and how photospheric motions affect the structure of a loop.The magnetic energy released during a reconnection event. can be estimated if one knows the equilibrium energy before and after the event. For a loop with highly tangled field lines, a direct solution of the equilibrium equations may be difficult. However, lower bounds can be placed on the energy of the equilibrium field, given a measure of the tangling known as the crossing number. These bounds lead to an estimate of the buildup of energy in a coronal loop caused by random photospheric motions. Parker's topological dissipation model can plausibly supply the 107 erg cm–2 s–1 needed to heat the active region corona. The heating rate can be greatly enhanced by fragmentation of flux tubes, for example by the breakup of photospheric footpoints and the formation of new footpoints.  相似文献   

4.
We review progress in understanding the dynamics of a typical magnetic reconnection layer by describing the historical development of theory and the recent findings and discoveries in space and laboratory plasmas. The emphasis is on the dynamics of electrons moving with respect to ions in the collision-free neutral sheet. We make a detailed comparison of experimental results from the Magnetic Reconnection Experiment (MRX) with those from theory and numerical simulations. The collaboration between space and laboratory scientists on reconnection research has recently reached a point where we can compare measurements of the reconnection layer profile in detail with support from numerical simulations. In spite of the large difference in physical scales by 106?C107, we find remarkable commonalities in the features of the magnetic reconnection region in laboratory and magnetospheric plasmas. A newly planned laboratory experiment, in which a current sheet is swept in the way a magnetosphere current sheet crosses space satellites, is also described.  相似文献   

5.
Initial ISEE magnetometer results: magnetopause observations   总被引:15,自引:0,他引:15  
The magnetic field profiles across the magnetopause obtained by the ISEE-1 and -2 spacecraft separated by only a few hundred kilometers are examined for four passes. During one of these passes the magnetosheath field was northward, during one it was slightly southward, and in two it was strongly southward. The velocity of the magnetopause is found to be highly irregular ranging from 4 to over 40 km s-1 and varying in less time than it takes for a spacecraft to cross the boundary. Thicknesses ranged from 500 to over 1000 km.Clear evidence for reconnection is found in the data when the magnetosheath field is southward. However, this evidence is not in the form of classic rotational discontinuity signatures. Rather, it is in the form of flux transfer events, in which reconnection starts and stops in a matter of minutes or less, resulting in the ripping off of flux tubes from the magnetosphere. Evidence for flux transfer events can be found both in the magnetosheath and the outer magnetosphere due to their alteration of the boundary normal. In particular, their presence at the time of magnetopause crossings invalidates the usual 2-dimensional analysis of magnetopause structure. Not only are these flux transfer events probably the dominant means of reconnection on the magnetopause, but they may also serve as an important source of magnetopause oscillations, and hence of pulsations in the outer magnetosphere. On two days the flux transfer rate was estimated to be of the order of 2 × 1012 Maxwells per second by the flux transfer events detected at ISEE. Events not detectable at ISEE and continued reconnection after passage of an FTE past ISEE could have resulted in an even greater reconnection rate at these times.  相似文献   

6.
It is suggested that the energy input for explosive events in the transition zone comes from precipitating ions, typically of energies of a few×102 keV/nucleon, accelerated in the high corona. The energetics of the process are discussed, together with implications for coronal heating.  相似文献   

7.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

8.
Astrophysical fluids have very large Reynolds numbers and therefore turbulence is their natural state. Magnetic reconnection is an important process in many astrophysical plasmas, which allows restructuring of magnetic fields and conversion of stored magnetic energy into heat and kinetic energy. Turbulence is known to dramatically change different transport processes and therefore it is not unexpected that turbulence can alter the dynamics of magnetic field lines within the reconnection process. We shall review the interaction between turbulence and reconnection at different scales, showing how a state of turbulent reconnection is natural in astrophysical plasmas, with implications for a range of phenomena across astrophysics. We consider the process of magnetic reconnection that is fast in magnetohydrodynamic (MHD) limit and discuss how turbulence—both externally driven and generated in the reconnecting system—can make reconnection independent on the microphysical properties of plasmas. We will also show how relaxation theory can be used to calculate the energy dissipated in turbulent reconnecting fields. As well as heating the plasma, the energy dissipated by turbulent reconnection may cause acceleration of non-thermal particles, which is briefly discussed here.  相似文献   

9.
Transition region explosive events are observed throughout the quiet Sun and represent an interesting local heating phenomenon. The coronal counterparts of these events, if they exist, were not observed in a sounding rocket campaign dedicated to this objective. The coronal instrument complement on the SOHO spacecraft provides an opportunity to extend this search for the coronal counterparts of the transition region explosive events, as well as to explore the correspondence of explosive events with large scale coronal structures, such as with coronal dark lanes.  相似文献   

10.
Magnetic reconnection is a universal phenomenon where energy is efficiently converted from the magnetic field to charged particles as a result of global magnetic topology changes during which earlier separated plasma regions become magnetically connected. While the reconnection affects large volumes in space most of the topology changes and of the energization occur within small localized regions. Regions of special importance are the X-region and the separatrix region. The understanding of the microphysics of these regions is crucial for the overall understanding of the reconnection. The Earth magnetosphere is the best environment where the details of these regions can be studied in situ. We summarize their main properties and discuss recent spacecraft observations.  相似文献   

11.
3He-rich solar energetic particle (SEP) events show huge enrichments of 3He and association with kilovolt electrons and Type-III radio bursts. Observations from a new generation of high resolution instruments launched on the Wind, ACE, Yohkoh, SOHO, TRACE, and RHESSI spacecraft have revealed many new properties of these events: the particle energy spectra are found to be either power-law or curved in shape, with the 3He spectrum often being distinctly different from other species. Ultra-heavy nuclei up to >200 amu are found to be routinely present at average enrichments of >200 times solar-system abundances. The high ionization states previously observed near ∼1 MeV/nucleon have been found to decrease towards normal solar coronal values in these events. The source regions have been identified for many events, and are associated with X-ray jets and EUV flares that are associated with magnetic reconnection sites near active regions. This paper reviews the current experimental picture and theoretical models, with emphasis on the new insights found in the last few years.  相似文献   

12.
In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ~10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.  相似文献   

13.
The Hard X-ray Imaging Spectrometer aboard the SMM detected gigantic arches in the corona which are formed or, if preexisting, become excited after major two-ribbon flares. They are seen in 3.5–8 keV X-rays and extend along the H = 0 line to altitudes between 105 and 2 × 105 km. These arches are stationary and form the base of a stationary type I radio noise storm initiated by the flare. They are visible in X-rays for ten hours or more and may be revived, in temperature, density, and brightness, if another two-ribbon flare appears below them. We suggest that they are built-up through reconnection process during the flare from the upper reconnected loops in the Kopp and Pneuman model. These loops become interconnected along the H = 0 line in consequence of great shear of the reconnecting loops. Obviously, the coronal transient associated with such flares must be either accomplished prior to the formation of the arch, or it must be formed through a process different from the Anzer-Kopp-Pneuman mechanism. Striking brightness variations occur quasi-periodically in the corona below and above the arch a few hours after the flare. These variations are seen at about the same time in soft X-rays, hard X-rays, and on centimeter microwaves in the low corona, as well as at metric waves in the type I noise-storm region. In spite of their flare-like intensity, however, the variations have little response in the transition layer (O v line) and no response at all in the chromosphere (Hα). We suggest that these semi-periodic brightenings are due to repetitive acceleration processes in plasmoids that encircle the arch perpendicular to the H = 0 line from the low corona through the noise storm region, being completely detached from the lower atmospheric layers.  相似文献   

14.
Magnetic reconnection may play an important role in heating the corona through a release of magnetic energy. An understanding of how reconnection proceeds can contribute to explaining the observed behavior. Here, recent theoretical work on magnetic reconnection for coronal conditions is reviewed. Topics include the rate that collisionless (Hall) reconnection proceeds, the conditions under which Hall reconnection begins, and the effect of secondary islands (plasmoids) both on the scaling and properties of collisional (Sweet-Parker) reconnection and on the onset of Hall reconnection. Applications to magnetic energy storage and release in the corona are discussed.  相似文献   

15.
This review is devoted to the problem of the internal fine structure of the Earth's magnetopause. A number of theoretical and experimental papers dealing with this subject is discussed from a unified viewpoint. The Vlasov kinetic approach is used to study the stability of magnetopause magnetic surfaces that can be destructed by the growth and overlapping of magnetic islands. The stochastic wandering of magnetic field lines between the destructed surfaces can result in magnetic percolation, i.e. the appearance of a topological connection of interplanetary and geomagnetic field lines. Such a process may be considered as a mechanism of the macroscopic (but spatially localized) reconnection. We discuss this in relation with the phenomena of spontaneous patchy reconnection, recently observed at ISEE satellites and now known as flux transfer events.Drift tearing mode, which is responsible for the growth of magnetic islands can be stabilized due to its coupling with ion sound waves, and the process of percolation will be interrupted if even a thin region with smooth stable magnetic surfaces exists within the magnetopause. Accordingly, we obtain a magnetopause stability threshold for localized reconnection. It is represented in the form of dependence of marginal dimensionless thickness of the magnetopause on the angle of magnetic field rotation within it.Further, we discuss the possible role of lower hybrid turbulence permanently observed within the. magnetopause and speeding up the process of reconnection. Nonlinear calculations supporting the developed model are given in the appendices. We consider briefly the motion of reconnecting flux tubes and evaluate the time necessary for the accomplishment of percolation. The calculations show that the appearance of reconnection patchies at the dayside magnetopause cannot occur too far from the stagnation region. The latter agrees with experimental indications on the most probable site of the formation of flux transfer events. In the concluding part of the review we discuss the necessary limitations on the theory, possible lines of its future advance and comparison with the experimental data.  相似文献   

16.
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from ~0.1 to ~500–700?MeV. All of the proton spectra exhibit spectral breaks at energies ranging from ~2 to ~46?MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of ?3.18 at >40?MeV/nuc. In the energy range 45 to 80?MeV/nucleon about ~50?% of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of 〈Q Fe〉≈+20 if the acceleration starts at ~1.24–1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.  相似文献   

17.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   

18.
Magnetic reconnection can lead to the formation of observed boundary layers at the dayside magnetopause and in the nightside plasma sheet of the earth's magnetosphere. In this paper, the structure of these reconnection layers is studied by solving the one-dimensional Riemann problem for the evolution of a current sheet. Analytical method, resistive MHD simulations, and hybrid simulations are used. Based on the ideal MHD formulation, rotational discontinuities, slow shocks, slow expansion waves, and contact discontinuity are present in the dayside reconnection layer. Fast expansion waves are also present in the solution of the Riemann problem, but they quickly propagate out of the reconnection layer. Our study provides a coherent picture for the transition from the reconnection layer with two slow shocks in Petschek's model to the reconnection layer with a rotational discontinuity and a slow expansion wave in Levy et al's model. In the resistive MHD simulations, the rotational discontinuities are replaced by intermediate shocks or time-dependent intermediate shocks. In the hybrid simulations, the time-dependent intermediate shock quickly evolves to a steady rotational discontinuity, and the contact discontinuity does not exist. The magnetotail reconnection layer consists of two slow shocks. Hybrid simulations of slow shocks indicate that there exists a critical number,M c, such that for slow shocks with an intermediate Mach numberM IM c, a large-amplitude rotational wavetrain is present in the downstream region. For slow shocks withM I<M c, the downstream wavetrain does not exist. Chaotic ion orbits in the downstream wave provide an efficient mechanism for ion heating and wave damping and explain the existence of the critical numberM c in slow shocks.  相似文献   

19.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

20.
Magnetic Reconnection Phenomena In Interplanetary Space   总被引:3,自引:0,他引:3  
Wei  Fengsi  Hu  Qiang  Feng  Xueshang  Fan  Quanlin 《Space Science Reviews》2003,107(1-2):107-110
Interplanetary magnetic reconnection(IMR) phenomena are explored based on the observational data with various time resolutions from Helios, IMP-8, ISEE3, Wind, etc. We discover that the observational evidence of the magnetic reconnection may be found in the various solar wind structures, such as at the boundary of magnetic cloud, near the current sheet, and small-scale turbulence structures, etc. We have developed a third order accuracy upwind compact difference scheme to numerically study the magnetic reconnection phenomena with high-magnetic Reynolds number (R M=2000–10000) in interplanetary space. The simulated results show that the magnetic reconnection process could occur under the typical interplanetary conditions. These obtained magnetic reconnection processes own basic characteristics of the high R M reconnection in interplanetary space, including multiple X-line reconnection, vortex velocity structures, filament current systems, splitting, collapse of plasma bulk, merging and evolving of magnetic islands, and lifetime in the range from minutes to hours, etc. These results could be helpful for further understanding the interplanetary basic physical processes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号