首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
根据吹气边界层流动控制的特点,探索了前缘缝翼流动控制和减噪技术。利用FLUENT软件对某多段翼型进行数值模拟,求解RANS方程和FW-H声学方程。在前缘缝翼下翼面设置吹气孔,通过改变吹气系数,研究缝翼缝道内吹气流动控制对二维多段翼型气动性能及噪声特性的影响。计算结果表明:应用缝翼吹气技术可在相同迎角下获得更高的升力系数,且能减小缝翼缝道内的分离,降低角涡引起的噪声;不同吹气系数对多段翼升力和噪声有不同程度的影响;迎角为6毅时,吹气控制可以使低频噪声减少2~4.5dB。  相似文献   

2.
襟翼缝道对多段翼型气动特性影响的实验研究   总被引:3,自引:0,他引:3  
对具有襟翼不同缝道构形的多段翼型进行了翼面边界层、表面压力、尾迹速度的测量,同时作了翼面流谱观察实验。实验结果表明,襟翼缝道的不同构形对多段翼型的流动特性、增升效果和升阻特性有着强烈的影响,该研究中具有最佳优化缝道的多段翼型的最大升力系数可达3.360,它为普通缝道多段翼型对应迎角下升力系数的115%。  相似文献   

3.
为了研究前缘缝翼尾缘剪切层对多段翼气动性能的影响,通过在前缘缝翼尾缘添加喷流的方式来改变缝翼尾缘处的剪切层。选取不同的喷流流量和流速等参数,利用CFD手段研究了喷流对缝道的速度分布以及多段翼各个翼面气动力的影响。多段翼二维非定常流场由有限体积法求解的二维非定常雷诺平均Navier-Stokes方程得到。分析结果得到:前缘缝翼尾缘添加喷流后对多段翼各个翼面压力分布和最大升力系数均有较大影响,其中,主翼最大升力系数、总的最大升力系数、前缘缝翼和后缘襟翼升力系数随着喷流动量系数增加而增加。  相似文献   

4.
高负荷扩压叶栅边界层容易发生流动分离.采用吹吸气相结合的流动控制方法可以有效控制分离并且提高扩压叶栅的性能.影响吹吸气流动控制效果的因素有很多,包括吹吸气位置.吹吸气流量以及吹吸气槽宽度等.通过研究某一大弯折角低稠度扩压叶栅在不同位置处吹气的数值模拟.发现从3%至17%弦长不同位置处吹气均能有效控制叶栅中的边界层分离,提高叶栅总体性能;计算还表明在原型叶型吸力面产生激波处吹气可以达到最好的控制效果,叶栅总压损失系数可降至原型的12%以内.  相似文献   

5.
短距起降运输机对增升装置提出了更高要求,常规机械式增升装置已无法满足,内吹式襟翼系统是当今固定翼飞机最有效的动力增升形式.为推动该技术的工程应用,基于雷诺平均N-S方程,对某加装60°偏角无缝襟翼的亚声速翼型在环量控制作用下的流场进行数值模拟,研究了其在不同吹气动量系数下的气动特性及流动形态,分析了不同环量控制阶段增升机理、失速特性和吹气动量系数对失速特性影响规律.结果表明:内吹式襟翼增升控制效率(升力系数增量与吹气动量系数的比值)较高,在临界吹气动量系数下可达70,此时相较于无吹气状态,升力增加约125%;主翼上由于环量增加产生的升力增量是翼型升力增量的主要来源,约占总升力增量的78%;吹气动量系数增加可造成翼型气动中心后移;附面层分离控制区主要通过消除襟翼上的流动分离增加升力,超环量控制区升力的增加是由于尾缘下游的射流效应使流线进一步偏转而实现的;随吹气动量增加,附面层分离控制区的失速迎角提前,超环量控制区失速迎角略微推迟.  相似文献   

6.
边界层吹吸气对高负荷扩压叶栅性能的影响   总被引:4,自引:4,他引:4       下载免费PDF全文
周杨  邹正平  刘火星  叶建 《推进技术》2007,28(6):647-652
采用边界层流动控制能够有效抑制扩压叶栅的流动分离。以某大弯折角低稠度扩压叶栅为研究对象,利用数值模拟手段研究了原型、叶片表面边界层单独吹气以及吹吸气相结合等边界层控制手段下的流场和叶栅性能变化情况。结果表明,无论是单独吹气还是吹吸气相结合的边界层控制方法,都能有效控制扩压叶栅中的边界层分离,从而较大幅度地增大叶栅负荷,并降低气动损失;计算表明,吹气和吸气的效果不尽相同,且吹吸气口位置及吹吸气流量对边界层的流动亦有较为明显的影响。其中采用1.7%的吹气流量,结合1.38%的吸气量,可以使静压增压比提高15%以上,而损失系数降低至原型的20%以内。  相似文献   

7.
缝道流动参数对多段翼型气动特性非常重要。通常采用改变翼型外形、缝道几何参数组合以及流动主/被动控制来改变缝道流动参数,提高多段翼型的气动性能。在不同的声激励方式下,通过风洞实验的方法研究多段翼型升力特性变化的规律,以探索提高增升效果的新途径。采用NF-3风洞实验,着重研究声源在模型表面的位置及排列方式对翼型升力特性影响的规律,包括单点激励、单排多点激励、多排多点激励、M型多点激励等四种不同的激励方式。结果表明:在GAW一1两段翼型的襟翼上表面加入弱声激励,翼型的升力系数有了一定变化;不同的激励方式对翼型升力系数的影响不同;在研究范围内,单点声激励使翼型的升力系数减小,M型多点声激励使翼型的升力系数少量增加。  相似文献   

8.
缝道流动参数对多段翼型气动特性非常重要.通常采用改变翼型外形、缝道几何参数组合以及流动主/被动控制来改变缝道流动参数,提高多段翼型的气动性能.在不同的声激励方式下,通过风洞实验的方法研究多段翼型升力特性变化的规律,以探索提高增升效果的新途径.采用NF-3风洞实验,着重研究声源在模型表面的位置及排列方式对翼型升力特性影响的规律,包括单点激励、单排多点激励、多排多点激励、M型多点激励等四种不同的激励方式.结果表明:在GAW-1两段翼型的襟翼上表面加入弱声激励,翼型的升力系数有了一定变化;不同的激励方式对翼型升力系数的影响不同;在研究范围内,单点声激励使翼型的升力系数减小,M型多点声激励使翼型的升力系数少量增加.  相似文献   

9.
二维襟翼吹气控制的数值模拟   总被引:1,自引:0,他引:1  
合理设计机翼翼型、前缘缝翼和后缘襟翼是飞机增升设计的重要手段,本文主要研究二雏襟翼吹气对翼型升力的影响。吹气襟翼的工作原理是,当襟翼偏转角较大时,由于翼面上表面的气流分离,此时达不到附着流所预计的升力值,可以在襟翼上表面进行吹气控制,吹除后缘的涡流而增大升力,得到预计的升力曲线。本文以NACA23018翼型为基础研究对象,采用非结构网格,在襟翼向下偏转角度45度的情况下,进行襟翼上表面的吹气效应数值模拟与流动控制机理的研究,结果表明此情况下襟翼上表面的吹气控制达到了增加升力和抑制分离的目的。  相似文献   

10.
曹建发  陈晏清 《航空学报》1990,11(8):313-319
 本文给出带有分离流动的多段冀型的优化计算方法。以最大升力系数为目标函数,对前缘缝翼或襟翼的位置和偏角进行优化。文中对带有后缘富勒式襟翼的NLR 7301翼型和GA(W)-1翼型进行最大升力计算和优化计算,所得结果和实验值相比符合得较好。  相似文献   

11.
基于Favre过滤的大涡模拟方法,对雷诺数Re=10^4,迎角α=6°下的NACA0012翼型上表面吹吸气射流进行了数值模拟,从翼型周围流场流线图、速度场云图、上下表面压力系数曲线以及上表面边界层位移厚度等多角度地分析了射流位置以及速度变化对翼型气动性能的影响。结果表明:射流位置对翼型气动性能影响较大,且吸气射流要明显优于吹气射流。对于吸气射流,前缘吸气要明显优于中后缘吸气,可有效增升减阻,并减小翼型尾部流动分离,抑制翼型气动参数扰动,其最佳吸气位置随着速度的增大逐渐向下游移动;而吹气射流对翼型气动系数的作用效果较差,但中后缘的吹气射流可减小飞行过程中的气动扰动量,且吹气越大,效果越明显。  相似文献   

12.
姜裕标  张刘  黄勇  高立华  陈洪 《航空学报》2018,39(7):121807-121807
传统尖尾缘翼型通过控制迎角,综合利用襟翼、缝翼来改变升力,升力对迎角变化的时间响应历程可以用Wagner函数来描述,而内吹式襟翼(IBF)主要通过控制分离来拓展最大升力,并在一定范围内通过调节射流强度改变驻点位置和环量来对升力进行有效控制,其升力随吹气动量变化的时间响应尺度是否与传统尖尾缘翼型相同还不是很清楚。本文主要研究内吹式襟翼升力响应过程,并将其与传统尖后缘翼型升力响应特性进行对比。首先通过某襟翼偏角为30°的双圆弧环量控制翼型对数值方法进行验证,再对某最大厚度为18%弦长的亚声速翼型内吹式襟翼定常吹气控制下的流场进行非定常数值模拟,并分析了其中的瞬态特征。结果表明内吹式襟翼环量控制翼型对激励响应的时间依赖特征与Wagner函数有很好的相互关系,并可以用该函数来描述。  相似文献   

13.
应用Gao-Yong湍流模型模拟了吹气对翼型表面分离流控制的影响.结果表明,该模型不仅能够对翼型绕流的分离点、表面压力分布、升阻特性等做出较好预测,而且还能模拟出控制分离的吹气效果:①有效消除翼面分离涡;②"裹携"翼面来流进一步提高升力系数.提高吹气动量系数,升力曲线上移的幅度也相应增加;而吹气角度对吹气射流"裹携"作用的强弱也有一定的影响,当吹气方向相对于翼弦偏上时,吹气射流"裹携"来流与消除分离涡的作用增强,升力提升更为明显.   相似文献   

14.
董斌斌  金海波 《飞机设计》2013,(2):27-30,38
富勒襟翼能够产生比普通单缝襟翼更大的升力增量,而且比双缝和多缝襟翼结构简单、活动部件少,更有利与气动优化,在现代民用飞机上有着越来越多的应用。本文使用二次曲线分段构造富勒襟翼的几何外形,使用SST-k-ω湍流模型对气动网格模型进行数值模拟,以此为基础优化襟翼的几何外形来提高襟翼的升力增量,并对襟翼外形优化前后的计算结果进行了分析。研究结果表明,通过优化富勒襟翼外形,可以提高襟翼头部的吸力峰值,进而提高对主翼环量诱导作用,使得两段翼型的升力系数增加。基于CFD流场显示,可以发现由于襟翼缝道流动对襟翼气流的分离起到抑制作用,因此随着两段翼型迎角的适当增加,反而可以改善襟翼上方气流的分离情况。  相似文献   

15.
郝璇  刘芳  王斌 《航空工程进展》2016,7(4):408-419
边界层吹气是增加飞行器升力的有效措施.针对普通陆基起降飞行器,根据总体参数对其实现舰载起降的气动力特性需求进行分析并提出五组初步方案;同时对襟/缝翼定常吹气的增升潜力进行数值模拟研究.结果表明:襟/缝翼吹气能够使升力系数显著增加;襟翼和缝翼吹气存在相互干扰,升力增量的变化率随吹气动量系数的增加而减小;当吹气动量系数不大于6%时,襟/缝翼吹气最大升力系数最大可达1.85左右,α=15°时升力系数最大可达1.40左右,可满足所提五组气动力特性需求方案中的三组方案的舰载起降需求.  相似文献   

16.
脉冲吹气对无缝襟翼翼型气动性能的影响   总被引:1,自引:0,他引:1  
王万波  姜裕标  黄勇  于昆龙  张鑫 《航空学报》2018,39(11):122118-122129
只有采用足够小的能量输入,获取更大的空气动力收益后,主动流动控制才有可能在真实飞机上获得更广泛的应用。脉冲吹气比定常吹气所需能量更少,控制效果更好,在改善翼型气动性能上得到广泛的研究。数值模拟了脉冲频率、占空比、动量系数等参数对无缝襟翼翼型升阻特性的影响规律,研究表明,脉冲频率接近于涡脱落频率时增升效果最好,当脉冲频率小于涡脱落频率时,阻力增加,当脉冲频率为涡脱落频率2倍时,阻力减小最多;动量系数较小时,占空比越小,冲击效应越强,增升效果越好;动量系数小于临界动量系数时,脉冲吹气增升效果优于定常吹气,当动量系数大于临界动量系数时,脉冲吹气控制效果低于定常吹气。研究脉冲吹气参数对翼型性能的影响规律,对采用周期性激励增升减阻、舵面增效的飞行器设计具有一定参考意义。  相似文献   

17.
 本文分析了在FL-8和FL-5风洞完成的一个三角翼飞机模型展向吹气全模测力和机翼半模流态实验中的襟翼展向吹气的气动效果,并且与同一模型在同一风洞中所得到的吹气襟翼结果进行了比较。 明确了在大偏度襟翼上展向吹气,产生的集中涡是“肩线涡”,而不是“喷气涡”。指出涡控制是襟翼展向吹气增升的重要原因,而不应单纯归结为边界层控制问题。通过对喷嘴形状和参数的优选,实现了用当前发动机实际能提供的小的吹气动量系数(约0.012)取得与吹气襟翼相近的升力增量。从而有可能显著地改善飞机的着陆性能。首次采用了“两叉喷嘴”,使整个襟翼面的流动获得改善。由于这项技术结构简单、重量轻、不占用机翼内部空间、生存力强,因此可望成为飞机设计中一种可供选用的动力增升方案。  相似文献   

18.
大型水陆两栖飞机吹气襟翼设计与分析验证   总被引:3,自引:2,他引:1  
针对大型水陆两栖飞机的使用特点和指标要求,以原型机翼为基础,重点开展机翼附面层控制增升装置设计技术研究,设计了附面层控制的吹气襟翼方案.采用计算流体动力学方法作为初步设计的评估手段,全面分析评估了设计方案的气动力特性和流场结构,最后通过风洞试验验证了该方案的增升效果.结果显示该设计方案在较宽的吹气动量系数范围内,最大升力系数均有不同程度的增幅,在吹气动量系数约为0.2左右时,获得最大的升力系数增量约为1.0,按照原型机的滑流影响规律推算,当采用吹气襟翼的主动流动控制方案后,起降速度能下降约30%,达到了设计指标.   相似文献   

19.
螺旋桨滑流对简单襟翼吹气控制的影响   总被引:1,自引:1,他引:0  
为探究螺旋桨滑流对无缝简单襟翼吹气控制的影响,设计了集成吹气系统和螺旋桨的高升力翼型模型,开展了简单襟翼吹气控制的测压和粒子图像测速仪(PIV)流场测试试验,在不同拉力系数下,研究了定常吹气和脉冲吹气对模型不同展向截面的控制效果。结果表明:滑流影响下控制效果具有明显的三维效应,在相同吹气动量系数下,滑流强度较大的截面具有较高的吹气控制效率;对于脉冲吹气,滑流强度较小时,基于襟翼弦长的最佳无量纲频率约为0.31;在最佳频率的吹气可在较低动量系数下实现较大的增升量;最佳频率受滑流强度影响明显。研究结果对高效的吹气襟翼设计提供了试验依据,提出了螺旋桨滑流影响下的吹气襟翼设计建议。   相似文献   

20.
大量附面层吸入S弯进气道内吹气控制   总被引:1,自引:0,他引:1  
刘雷  陈浮  宋彦萍  陈焕龙 《航空动力学报》2015,30(10):2498-2507
为了提高某大量附面层吸入的半埋入S弯进气道气动性能,采用数值模拟方法对其进行吹气控制研究并详细分析了吹气控制机理及吹气位置、吹气量、吹气角度变化对控制效果的影响.结果表明:吹气位置变化显著影响控制效果,最佳吹气位置位于气流分离点稍前的第1弯附近,该位置吹气比为1.75%、吹气角度为20°吹气时总压恢复系数相对原型提高约0.56%,出口周向总压畸变系数和旋流畸变系数分别下降约43.14%和83.60%;吹气角度并非越大越好,吹气时需尽量满足吹气角度较小,保证吹出的气流始终位于附面层内,避免与主流掺混而造成损失;总压恢复、出口周向总压畸变以及旋流畸变三者随吹气量变化的趋势不同,吹气量越大进气道总压恢复及总压畸变改善越明显,而旋流畸变随吹气量的增加先快速下降,随后变缓,最终甚至出现增加的趋势.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号