共查询到20条相似文献,搜索用时 0 毫秒
1.
The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation. 总被引:1,自引:0,他引:1
L Narici F Belli V Bidoli M Casolino M P De Pascale L Di Fino G Furano I Modena A Morselli P Picozza E Reali A Rinaldi D Ruggieri R Sparvoli V Zaconte W G Sannita S Carozzo S Licoccia P Romagnoli E Traversa V Cotronei M Vazquez J Miller V P Salnitskii O I Shevchenko V P Petrov K A Trukhanov A Galper A Khodarovich M G Korotkov A Popov N Vavilov S Avdeev M Boezio W Bonvicini A Vacchi N Zampa G Mazzenga M Ricci P Spillantini G Castellini R Vittori P Carlson C Fuglesang D Schardt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1352-1357
2.
M E Vazquez T M Broglio B V Worgul E V Benton 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):467-474
Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed. 相似文献
3.
K E Gartenbach M Pickert M W Zimmermann A R Kranz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):105-108
Recently, comparison of biophysical data obtained from orbital flights of short and long duration led to results which will be significant for long and/or repeated stay of man in space. Under orbital conditions biological stress is induced in dry seeds of Arabidopsis thaliana by cosmic radiation especially its high energetic, densely ionizing component, the heavy ions (HZE). For comparison of radiation impact during different space flights a biological attempt at estimating the impact of single particles with high mass and energy (HZE-particles) on seeds was developed. Subdivision into LET-groups showed a remarkable contribution of an intermediate group (LET = 35 to 100 keV/micrometer) due to medium heavy ions (Z = 6 to 10). Efficiency factors for radiation damage experimentally determined and assigned to different LET-classes were compared to radiation quality factors discussed in literature. 相似文献
4.
G Reitz H Bucker R Facius G Horneck E H Graul H Berger W Ruther W Heinrich R Beaujean W Enge A M Alpatov I A Ushakov D A Zachvatkin YuAMesland 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):161-173
Eggs of Carausius morosus were exposed to spaceflight conditions in two spaceflight missions, the German 7 day Spacelab Mission D1 and the Soviet 12.56 day Biosatellite Mission "COSMOS 1887". During spaceflight the eggs continued their development. Eggs of five different ages representing different sensitivity to radiation and different capacity to regeneration were used to investigate the influence of cosmic radiation and/or microgravity on insect development. Using the Biostack concept--eggs in monolayers sandwiched between nuclear track detectors--and the 1 g reference centrifuge of BIORACK in D1 we were able to separate effects of heavy ions of the cosmic radiation from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, embryonic and larval growth kinetics and anomaly frequencies were determined. Microgravity leads to a reduced hatching rate of eggs exposed in the early stages of development. Hatching was normal in eggs which were exposed on the 1 g reference centrifuge. Hits by heavy ions caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high frequency of anomalies. These results obtained from the Spacelab Mission D1, were confirmed in an experiment onboard of COSMOS 1887. In addition to the previous analysis, embryonic development before hatching was followed which showed no major difference between flight and the ground control specimens. Since a reconfirmation of reduced hatching rates was observed in COSMOS 1887, too, the above results suggest some microgravity induced functional impairment of the hatching activity, rather than blockage in embryonic development. 相似文献
5.
I V Getselev P P Ignatiev N A Kabashova N N Kontor A R Moszhukhina G A Timofeev T G Khotilovskaya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):441-444
Based on the available measurement data, simulations of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's and Jupiter's radiation belts has been carried out. The > or = 10 MeV and > or = 30 MeV solar flare proton fluence forecast has been proposed for Cycle 22. Radiation conditions due to both magnetospheric electrons and protons and to solar flare protons, magnetic rigidity cutoff being taken into account, have been evaluated on spacecraft trajectories in the Earth's and Jupiter's magnetospheres. 相似文献
6.
Changes in the central nervous system during long-duration space flight: implications for neuro-imaging. 总被引:1,自引:0,他引:1
A B Newberg A Alavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):185-196
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). 相似文献
7.
8.
J Semkova R Koleva G Todorova N Kanchev V Petrov V Shurshakov I Tchhernykh S Kireeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1297-1301
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. 相似文献
9.
B G Thompson B H Lake 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):133-140
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS. 相似文献
10.
M B Simakov E A Kuzicheva A E Dodonova NYaAntropov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1063-1066
The present experiment indicates that oligopeptides are easily produced in solid state from mixtures of simple amino acids by irradiating with high energy charged particles. We investigated such amino acids and their mixtures as tryptophan, tyrosine and glycine. The thin films was irradiated with protons (6.6 MeV). Such dipeptides as Trp-Trp, Gly-Tyr, Tyr-Gly, and Tyr-Tyr have been detected as products of irradiation. Cosmic rays might be an effective energy source for abiotic formation of bioorganic compounds on the surface of small bodies in the solar system on early stage of formation of planets as well as at present day. 相似文献
11.
D W Sammons U Zimmermann N R Klinman P Gessner R C Humphreys S P Emmons G A Neil 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):363-372
The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of groundbased technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, we have adapted mitogen-driven B lymphocyte stimulation and culture that allows for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. We believe that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bio-separation. 相似文献
12.
D R Morrison 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):1005-1019
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight. 相似文献
13.
Urodelean amphibians in studies on microgravity: effects upon organ and tissue regeneration. 总被引:1,自引:0,他引:1
E N Grigoryan V I Mitashov H J Anton 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):757-764
Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2-fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed. 相似文献
14.
F. Yatagai M. Honma A. Ukai K. Omori H. Suzuki T. Shimazu A. Takahashi T. Ohnishi N. Dohmae N. Ishioka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In view of the concern for the health of astronauts that may one day journey to Mars or the Moon, we investigated the effect that space radiation and microgravity might have on DNA damage and repair. We sent frozen human lymphoblastoid TK6 cells to the International Space Station where they were maintained under frozen conditions during a 134-day mission (14 November 2008 to 28 March 2009) except for an incubation period of 8 days under 1G or μG conditions in a CO2 incubator. The incubation period started after 100 days during which the cells had been exposed to 54 mSv of space radiation. The incubated cells were then refrozen, returned to Earth, and compared to ground control samples for the determination of the influence of microgravity on cell survival and mutation induction. The results for both varied from experiment to experiment, yielding a large SD, but the μG sample results differed significantly from the 1G sample results for each of 2 experiments, with the mean ratio of μG to 1G being 0.55 for the concentration of viable cells and 0.59 for the fraction of thymidine kinase deficient (TK−) mutants. Among the mutants, non-loss of zygosity events (point mutations) were less frequent (31%) after μG incubation than after 1G incubation, which might be explained by the influence of μG on cellular metabolic or physiological function. Additional experiments are needed to clarify the effect of μG interferes on DNA repair. 相似文献
15.
R H Anken H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):281-285
In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hyper-gravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity. 相似文献
16.
The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. 总被引:6,自引:0,他引:6
A Takahashi K Ohnishi S Takahashi M Masukawa K Sekikawa T Amano T Nakano S Nagaoka T Ohnishi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):555-561
We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells. 相似文献
17.
A R Kranz K E Gartenbach M W Zimmermann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):383-388
The role of cosmic ionizing radiation, including heavy ions (HZE-particles) in the induction of mutations at the molecule-, chromosome-, genome- and cell-level is discussed on the basis of different DNA organization in a pro- and eukaryotically compartmented plant system (Arabidopsis thaliana (L.) Heynh.). Data recently obtained on the biological effects of ionizing radiation make it timely to discuss comparatively the evolutionary potentials of space radiation effects in the pro- and eukaryotic genomes (plasmon, plastidom, chondriom, and nucleom) during long duration exposure on space flights. 相似文献
18.
Yuichiro Ezoe Tomoki Kimura Satoshi Kasahara Atsushi Yamazaki Kazuhisa Mitsuda Masaki Fujimoto Yoshizumi Miyoshi Graziella Branduardi-Raymont Kumi Ishikawa Ikuyuki Mitsuishi Tomohiro Ogawa Takuya Kakiuchi Takaya Ohashi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations. 相似文献
19.
E L Powers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):213-221
The original demonstration in the bacterial spore of the multiple actions of oxygen in modifying the responses of cells to ionizing radiation has now been verified in mammalian systems, pointing up the need for separate inquiry into each of the several components if the responses of mammalian cells are to be understood. We have provided physico-chemical explanations for only two of the four (at least) oxygen elements recognized in the spore: the reaction of diatomic oxygen with organic free radicals in dry spores; and an action of the hydroxy radical (OH) in spores at low [O2]. This paper will discuss newly recognized features of the oxygen responses that could reveal the nature of the other components. It will examine modulation of response by oxides of nitrogen, the similarities and differences among them and explanations for them that suggest further experiment, the importance of concentration of additive in determining both quantity and quality of response, and a general model that explains sensitizer action in terms of inhomogeneous chemistry. 相似文献