首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

2.
Analysis of recent observations (from balloons, spacecraft, and surface observatories) demonstrate regional, shell, and nearpoint conjugacy at L ~ 7 during precipitative events which were characterized by local acceleration as well as release of gradient-drifted electrons injected during substorms. A number of new features of magnetospheric dynamics relating to substorm development and sudden-commencement effects, have been brought to light which, though poorly understood at present, may prove of considerable importance and are worthy of further investigation.
  1. During the initial period of instability in substorm evolution, preceding the slower magnetotail convective injection, precipitation of waves of electrons in rapid polewards motion exhibit L-shell conjugacy near midnight.
  2. Transient, large scale expansions of the magnetospheric electron population accompanied by temporally imbedded substorms display large scale regional conjugacy and are simultaneously observed as similarly transient intensity dropouts at balloon altitudes.
  3. Precipitation from gradient-drifting electrons in the dayside magnetosphere exhibits near point-conjugacy, at least down to the order of 50 km and quite probably less.
Similarly tight conjugacy applies to the release of electrons showing a specific local response to sudden commencements.
  1. Analysis of the approach to and attainment of spectral equilibrium in the precipitation observed from drifting electrons may provide information about either, or both, the source spectrum at injection and the process of local release.
  2. The specific precipitation effect sometimes observed at the time of an SC remains a rather puzzling feature, although it seems clear now that the acceleration and/or release process responsible is of a highly local nature and works selectively at small pitch angles well within the magnetospheric boundary. Coupling of the interplanetary shock with the magnetosphere must be an important aspect, but the details are not clear as yet.
  3. On at least one occasion, a large part (perhaps all) of the magnetospheric electron population varied in a nearly synchronous manner in response to solar wind induced distortions during the variable compressive phase of a sudden commencement geomagnetic storm.
In the ongoing effort to identify and understand acceleration and release mechanisms involved in magnetospheric dynamics, balloon-borne experiments will continue to be useful, providing essential information presently unattainable by other means.  相似文献   

3.
The empirical properties of the various dynamic phenomena are reviewed and interrelated with emphasis on recent observational results. The topics covered are:
  1. Introduction
  2. Aperiodic Phenomena
  3. Externally Driven Phenomena
  4. Umbral Flares
  5. Inverse Evershed Flow
  6. Internally Driven Phenomena
  7. Penumbra
  8. Penumbral Grains
  9. Evershed Flow
  10. Umbra
  11. Umbral Dots
  12. Inhomogeneity of the Umbral Magnetic Field
  13. Umbral Turbulence
  14. Oscillations and Waves
  15. Chromosphere
  16. Umbra: Oscillations and Flashes
  17. Penumbra: Running Waves and Dark Puffs
  18. Photosphere
  19. Overview
It is proposed from the observations that umbral dots and penumbral grains are essentially the same phenomenon, and that the observational goal of highest priority with respect to both the origin of the periodic phenomena and the problem of the missing heat flux is to better determine the nature of these elementary bright features.  相似文献   

4.
The geology of the decade of Apollo and Luna probably will become one of the fundamental turning points in the history of all science. For the first time, the scientists of the Earth have been presented with the opportunity to interpret their home planet through the direct investigations of another. Mankind can be proud and take heart in this fact. The interpretive evolution of the Moon can be divided now into seven major stages beginning sometime near the end of the formation of the solar system. These stages and their approximate durations in time are as follows:
  1. The Beginning — 4.6 billion years ago.
  2. The Melted Shell — 4.6–4.4 billion years ago.
  3. The Cratered Highlands — 4.4–4.1 billion years ago.
  4. The Large Basins — 4.1–3.9 billion years ago.
  5. The Light-colored Plains — 3.9–3.8 billion years ago.
  6. The Basaltic Maria — 3.8–3.0 (?) billion years ago.
  7. The Quiet Crust — 3.0 (?) billion years ago to the present.
The Apollo and Luna explorations that permit us to study these stages of evolution each have contributed in progressive and significant ways. Through them we now can look with new insight into the early differentiation of the Earth, the nature of the Earth's protocrust, the influence of the formation of large impact basins in that crust, the effects of early partial melting of the protomantle and possibly the earliest stages of the breakup of the protocrust into continents and ocean basins.  相似文献   

5.
The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610–1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ~1885. An effort from 2011–2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (\(B\)) from 1750-present that can be compared with two independent long-term (> ~600 year) series of annual \(B\)-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.  相似文献   

6.
The requirements of systematic exploration of the outer solar system have been intensively studied by a Science Advisory Group (SAG) of consulting scientists for the National Aeronautics and Space Administration (NASA). Comets and Asteroids were excluded from this study, as a separate group is planning missions to these bodies. This paper and accompanying articles on specific related scientific subjects written by members of the SAG, summarize the findings and recommendations of this group. These recommendations should not be interpreted as official NASA policy. Following some general introductory remarks, a brief sketch is given of the development and current status of scientific missions to the inner planets by the U.S. and the U.S.S.R. With this perspective, the development of the U.S. program for investigation of the outer solar system is described. The scientific focus of outer solar system exploration has been studied in detail. The relationship of the outer planetary bodies to one another and to the inner planets, as parts in a unified solar system evolved from a primitive solar nebula, is emphasized. Deductions from outer solar system investigations regarding the conditions of the solar nebula at the time of planetary formation have been considered. Investigations have been proposed that are relevant to studies of the atmospheric structure and dynamics, internal structure of the planets, satellite composition and morphology, and planetary and interplanetary fields and energetic particles. The mission type and sequence required to conduct a systematic exploration of the outer solar system has been developed. Technological rationales for the suggested missions are discussed in general terms. The existing NASA program for outer solar system exploration is comprised of four missions:
  1. Pioneer 10 fly-by mission to Jupiter and beyond, currently underway, with launch on 3 March 1972;
  2. Pioneer G, intended for a similar mission with planned launch 2–22 April 1973; and
  3. Two Mariner Jupiter/Saturn fly-bys in 1977, with experiment selection scheduled for late 1972 and detailed engineering design during 1972–74.
The Science Advisory Group advocates that detailed mission planning be undertaken on the following additional missions for launches during the late 1970's and early 1980's. Together with existing plans, these would provide a balanced, effective exploration program.
  1. 1976 Pioneer Jupiter/Out-of-Ecliptic (One Mission)
  2. 1979 Mariner Jupiter/Uranus Fly-bys (Two Missions)
  3. 1979 Pioneer Entry Probe to Saturn 1980 Pioneer Entry Probe to Uranus via Saturn Fly-by (Three Missions)
  4. 1981/1982 Mariner Jupiter Orbiter (Two Missions).
  相似文献   

7.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

8.
Recent examinations of extraterrestrial materials exposed to cosmic rays for different intervals of time during the geological history of the solar system have generated a wealth of new information on the history of cosmic radiation. This information relates to the temporal variations in
  1. the flux and energy spectrum of low energy (solar) protons of ? 10 MeV kinetic energy;
  2. the flux and energy spectrum of (solar) heavy nuclei of Z > 20 of kinetic energy, 0.5–10 MeV/n;
  3. the integrated flux of protons and heavier nuclei of ? 0.5 GeV kinetic energy, and
  4. the flux and energy spectrum of nuclei of Z > 20 of medium energy — 100–2000 MeV/n kinetic energy.
The above studies are entirely based on the natural detector method which utilises two principal cosmogenic effects observed in rocks, (i) isotopic changes and (ii) changes in the crystalline structure of rock constituents, due to cosmogenic interactions. The information available to date in the field of hard rock cosmic ray archaeology refers to meteorites and lunar rocks/soil. Additional information based on study of cosmogenic effects in man-made materials exposed to cosmic radiation in space is also discussed. It is shown that the natural detectors inspite of their extreme simplicity have begun to provide cosmic ray information in a very quantitative and precise manner comparable to the most sophisticated electronic particle detectors. The single handicap in using the hard rock detectors is however the uncertainty regarding their manner of exposure, geometry etc. At present, a variety of techniques are being used to study the evolutionary history of extraterrestrial materials and as this field grows, uncertainties in cosmic ray archaeology will correspondingly decrease.  相似文献   

9.
The Solar and Heliospheric Observatory (SOHO) — a space observatory to be placed, in 1995, 1.5 Gm sunward from the Earth in a halo orbit around the L1 Lagrange point — will investigate:
  • the solar corona, its heating and expansion into the solar wind, by both studying the radiation emerging from the outer solar atmosphere and in-situ solar wind measurements near 1 AU, and
  • the structure and dynamics of the solar interior by the method of helioseismology.
  • The science policy evolution leading to this comprehensive observatory concept is described. SOHO's link to the space-plasma-physics mission CLUSTER — devoted to the three-dimensional study of small structures in the magnetosphere — within the Solar Terrestrial Science Programme (STSP) and the embedding of STSP in the much larger International Solar Terrestrial Physics (ISTP) Programme are cited as well. The scientific subjects to be addressed by SOHO are introduced, and their current status assessed. Subsequently, the measurements required to advance these subjects are stated quantitatively and the payload, which will actually perform these measurements, is presented. The mission design, comprising spacecraft, orbit, operations and the data and ground systems are described. The special efforts made to obtain a reliable radiometric calibration of the instruments observing the Sun in the extreme-ultraviolet and to achieve a stable sensitivity through extreme cleanliness of spacecraft and instruments are emphasized and substantiated.  相似文献   

    10.
    The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
    1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
    2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
      相似文献   

    11.
    The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space probe (Venera 4, 1967). Venus appeared to be the first neighbor planet whose surface had been seen by us in the direct nearness made possible by means of the phototelevision device (Venera 9 and Venera 10, 1975). The reasons for the high interest in this planet are very simple. This planet is like the Earth by its mass, size and amount of energy obtained from the Sun and at the same time it differs sharply by the character of its atmosphere and climate. We hope that the investigations of Venus will lead us to define more precisely the idea of complex physical and physical-chemical processes which rule the evolution of planetary atmospheres. We hope to learn to forecast this evolution and maybe, in the far future, to control it. The last expeditions to Venus carried out in 1978 — American (Pioneer-Venus) and Soviet (Venera 11 and 12) — brought much news and it is interesting to sum up the results just now. The contents of this review are:
    1. The planet Venus — basic astronomical data.
    2. Chemical composition.
    3. Temperature, pressure, density (from 0 to 100 km).
    4. Clouds.
    5. Thermal regime and greenhouse effect.
    6. Dynamics.
    7. Chemical processes.
    8. Upper atmosphere.
    9. Origin and evolution.
    10. Problems for future studies
    Here we have attempted to review the data published up to 1979 and partly in 1980. The list of references is not exhaustive. Publications of special issues of magazines and collected articles concerning separate space expeditions became traditional last time. The results obtained on the Soviet space probes Venera 9, 10 (the first publications) are collected in the special issues of Kosmicheskie issledovanija (14, Nos. 5, 6, 1975), analogous material about Venera 11, 12 is given at Pis'ma Astron. Zh. (5, Nos. 1 and 5, 1978), and in Kosmicheskie issledovanija (16, No. 5, 1979). The results of Pioneer-Venus mission are represented in two Science issues (203, No. 4382; 205, No. 4401) and special issue of J. Geophys. Res. (1980). We shall mention some articles to the same topic among previous surveys: (Moroz, 1971; Sagan, 1971; Marov, 1972; Hunten et al., 1977; Hoffman et al., 1977) and also the books by Kuzmin and Marov (1974) and Kondrat'ev (1977). Some useful information in the part of ground-based observations may be found in the older sources (for example, Sharonov, 1965; Moroz, 1967). For briefness we shall use as a rule the abbreviations of space missions names: V4 instead of Venera 4, M10 instead of Mariner 10 and so on. The first artificial satellites of Venus in the world (orbiters Venera 9 and 10) we shall mark as V9-O, V10-O unlike the descent probes V9, V10. Fly-by modules of Venera 11 and Venera 12 we shall mark as V11-F and V12-F. Pioneers descent probes — Large (Sounder), Day, Night and North — will be marked as P-L, P-D, P-Ni, P-No, orbiter as P-O, and bus as P-B.  相似文献   

    12.
    Major interplanetary shock waves have often been successfully associated with major solar flares. The interplanetary response to weaker solar events, e.g., eruptive prominences (EP) and slow coronal transients, is far less pronounced. Recently, progress has been made by combining the newly-available data of white-light-coronagraph measurements from the earth-orbiting satellite P78/1 (these data show the development of coronal transients between 2.5 and 10 R bd, in-situ plasma measurements from the HELIOS solar probes positioned mostly above the Sun's limb at solar distances between 60 and 200 R bd (showing the reactions of the interplanetary plasma), ground based Hα-coronagraphs (showing in a few cases the evolution of EP's from the Sun's limb up to 1.5 Abd). In the years 1979 to 1981 about 25 uniquely associated events were identified, 19 of which allow some detailed analysis. The events can be sorted into three main categories:
  • The ‘flare-type’: 13 events, probably all of them flare-related, transient speeds v t from 560 to 1460 km s?1, no evidence for post-acceleration of the transient (indicating impulsive injection), all transients followed by drastic interplanetary shock waves, some of them probably involving magnetic clouds.
  • The ‘EP-type’: 4 events, none of them flare-related, at least one was observed as an Hα-EP, transient speed from 200 to 410 km s-1, all post-accelerated (indicating ‘driven’ injection), all followed by shocks with at least one magnetic cloud, one showing presence of He+ and O2+ behind the shock.
  • The ‘NCDE-type’: 2 events, one observed as an Hα-EP, the other without known solar source, v t , = 130 and 470 km s?1, one post-accelerated, the other one not, considerable density increase in interplanetary plasma (however, in pressure equilibrium with surroundings), one event including shock, the other not. These two events may not belong to the same category.
  • Our results are not completely consistent with previous work which is mainly based on data from the Skylab era, 1973/74. This could be due to the different phase in the solar cycle. The study is being continued.  相似文献   

    13.
    As problems we are interested in become more complex, we often find our simulations stretching the limits of available computer resources. For example, an interesting problem is simulation of dissipation processes in sub-critical collisionless shocks. To simulate this system our simulation box must contain the shock and its upstream and downstream regions over the entire length of a run. If the shock moves with any appreciable speed the box must then be considerably larger than the shock thickness making it hard to resolve the shock front itself with a reasonable number of grid points. A solution to this problem is to run the simulation in the frame of reference of the shock. Particles are injected upstream of the shock and leave the simulation box downstream. With the shock stationary in the simulation box, we only need to contain enough of the up and downstream regions for the fields, etc., to settle down and separate the shock from the box boundaries. In this tutorial we consider some basic algorithms used in a practical particle injection code, such as the two dimensional WAVE code used at Los Alamos. We will try to present these ideas in a simple format general enough to be easily included in any particle code. Topics covered are:
    1. Smoothly Injecting Particles.
    2. Generating the Distribution Functions.
    3. Time Dependent Injection Density.
    4. Boundary Conditions on Fields and Particles.
    (Flux and Charge Conservation)  相似文献   

    14.
    Quasi-static electric fields have been measured with two spherical probes supported by cable booms providing a baseline of 42 m for the measurement. The performance of the experiment is outlined to demonstrate that electric fields can be measured with accuracies of ±0.7 mV m-1 and ±1.0 mV m-1 in the dawn-dusk and satellite-sun directions respectively. These uncertainties can be considerably reduced under favourable plasma conditions. Examples of typical observations are described.
    1. The average electric field is always characterized by an irregular structure with time scales 0.5–5 min and with amplitudes of a few mV m-1.
    2. During substorms dawn-dusk electric fields up to 20–30 mV m-1 have been observed over intervals of 30–60 s.
    3. Oscillating electric fields with peak-to-peak amplitudes up to 10 mV m-1 and periods of 3–10 min have been observed following magnetospheric disturbances.
    The observations are discussed in terms of plasma motions and possible spatial scale sizes of the phenomena, standing magnetospheric wave modes and electrostatic potentials.  相似文献   

    15.
    We investigated the effect of mass accretion on the secondary components in close binomy systems (M total ≤ 2.5 M M 2,0 ≤ 0.75 M ) exchanging mass in the case A. The evolution of the low-mass close binary systems (M total ≤ 2.5 M ) exchanging the mass in the case A depends on the three main factors:

  • -the initial mass ratio (q 0 = M 2,0/M 1,0), which determines the rate of mass transfer between components;
  • -the inital mass of the secondary component (M 2,0) and
  • -the effectiveness of the heating of the photosphere of the secondary component, by infalling matter.
  • The second factor allows to divide all systems into two essentially different groups:
    1. systems in which the secondary component is a star with a radiative envelope, or with a thin convection zone in the uppermost layers;
    2. and systems in which secondary component has a thick convective envelope or is fully convective.
    The systems from the first group evolve into contact in a characteristic time scale 105 – 107 years, and reach contact after transfering of 0.03 – 0.3 M . The mass exchange proceeds only in a thermal time scale. For the systems from the group b the effectiveness of the heating of the stellar surface is the most important. In the case when the entropy of the newly accreted matter is the same as the surface entropy of the secondary, a convective star should shrink upon accretion. Then contact binaries are not formed. In the case when the entropy of the infalling matter is greater then that on the surface, the reaction of the secondary is different. The radius of the secondary component grows rapidly in response to accretion, and the systems reaches contact after the 103 – 3 106 years, and after transfer of 0.002 – 0.2. M . The reaction of the secondary is determined by the formation of the temperature inversion layer below the stellar surface. Full references in: Sarna, M.J. and Fedorova, A.V. (1988) “Evolutionary status of W UMa-type Binaries — Evolution into contact”, Astron. Astrophys., in press.  相似文献   

    16.
    The containment lifetime of the cosmic radiation is a crucial parameter in the investigation of the cosmic-ray origin and plays an important role in the dynamics of the Galaxy. The separation of the cosmic-ray Be isotopes achieved by two satellite experiments is considered in this paper, and from the measured isotopic ratio between the radioactive 10Be (half-life = 1.5 × 106 yr) and the stable 9Be, it is deduced that the cosmic rays propagate through matter with an average density of 0.24 ± 0.07 atoms cm-3, lower than the traditionally quoted average density in the galactic disk of 1 atom cm-3. This paper reviews the implications of this result for the cosmic-ray age mainly in the context of two models of confinement and propagation: the homogeneous model, normally identified with confinement to the galactic gaseous disk, and a diffusion model in which the cosmic rays extend into a galactic halo. The propagation calculations use:
    1. a newly deduced cosmic-ray pathlength distribution.
    2. a self-consistent model of solar modulation.
    3. an up-to-date set of fragmentation cross sections.
    The satellite results and their implications are compared with the information on the cosmic-ray age derived from other cosmic-ray radioactive nuclei and the measured differential energy spectrum of high-energy electrons. It is a major conclusion of this paper that in a homogeneous model the cosmic-ray age is 15(+7, -4) million years, i.e., about a factor 4 longer than early estimates based on the abundances of the light nuclei Li, Be, and B and a nominal interstellar density of 1 atom cm -3. The lifetime is even longer when the satellite results are applied to a diffusion halo model. The deduced traversed matter density, together with other astrophysical considerations, suggest the population of a galactic halo by the cosmic rays.  相似文献   

    17.
    Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous. A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism. Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures. Measurable attributes of molecular biosignatures include:
    1. Enantiomeric excess
    2. Diastereoisomeric preference
    3. Structural isomer preference
    4. Repeating constitutional sub-units or atomic ratios
    5. Systematic isotopic ordering at molecular and intramolecular levels
    6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.
    In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.  相似文献   

    18.
    A kinematic method of representing the three-dimensional solar wind flow is devised by taking into account qualitatively the stream-stream interaction which leads to the formation of a shock pair. Solar wind particles move radially away from the Sun, satisfying the frozen-magnetic field condition. The uniqueness of the present approach is that one can incorporate both theoretical and observational results by adjusting the parameters involved and that a self-consistent data set can be simulated. One can then infer the three-dimensional structure of the solar wind which is vital in understanding the interaction between the solar wind and the magnetosphere, and it is for this reason that the present kinematic method is devised. In the first part of this paper, the present kinematic method is described in detail by demonstrating that the following solar wind features can be simulated: (i) Variations of the solar wind quantities (such as the solar wind speed, the density and the IMF vector), associated with the solar rotation, at the Earth; (ii) the solar wind flow pattern in the meridian planes; (iii) the three-dimensional structure of the corotating interaction region (CIR); and (iv) the three-dimensional structure of the warped solar current sheet.In Section 2, the three-dimensional structure of solar wind disturbances are studied by introducing a flare-generated high speed stream into the two-stream model of the solar wind developed in Section 1. The treatment of the stream-stream interaction is generalized to deal with a flare-generated high speed stream, yielding a shock pair. The shock pair causes three-dimensional distortion of the solar current sheet as it propagates outward from the Sun. It is shown that a set of characteristic time variations of the solar wind speed, density, the interplanetary magnetic field magnitude B and angles (theta) and gf (phi) result at the time of the passage at the location of the Earth for a given set of flare conditions. These quantities allow us to compute the solar wind-magnetosphere energy coupling function . Time variations of the two geomagnetic indices AE and Dst are then estimated from . The simulated geomagnetic storms are compared with observed ones.In the third part, it is shown that recurrent geomagnetic storms can reasonably be reproduced, if fluctuating components of the interplanetary magnetic field (IMF) are superposed on the kinematic model of the solar wind developed in the first part. As an example, we simulate the fluctuating components by linearly polarized Alfvén waves and by random variations of the IMF angle (theta). Characteristics of the simulated and observed geomagnetic storms are discussed in terms of the simulated and observed AE and Dst indices. If the fluctuating components of the IMF can generally be identified as hydromagnetic waves, they may be an important cause for individual magnetospheric substorms, while the IMF magnitude B and the solar wind speed V modulate partially the intensity of magnetospheric substorms and storms.  相似文献   

    19.
    Solar wind forcing of Mars and Venus results in outflow and escape of ionospheric ions. Observations show that the replenishment of ionospheric ions starts in the dayside at low altitudes (??300?C800 km), ions moving at a low velocity (5?C10 km/s) in the direction of the external/ magnetosheath flow. At high altitudes, in the inner magnetosheath and in the central tail, ions may be accelerated up to keV energies. However, the dominating energization and outflow process, applicable for the inner magnetosphere of Mars and Venus, leads to outflow at energies ??5?C20 eV. The aim of this overview is to analyze ion acceleration processes associated with the outflow and escape of ionospheric ions from Mars and Venus. Qualitatively, ion acceleration may be divided in two categories:
    1. Modest ion acceleration, leading to bulk outflow and/or return flow (circulation).
    2. Acceleration to well over escape velocity, up into the keV range.
    In the first category we find a processes denoted ??planetary wind??, the result of e.g. ambipolar diffusion, wave enhanced planetary wind, and mass-loaded ion pickup. In the second category we find ion pickup, current sheet acceleration, wave acceleration, and parallel electric fields, the latter above Martian crustal magnetic field regions. Both categories involve mass loading. Highly mass-loaded ion energization may lead to a low-velocity bulk flow??A consequence of energy and momentum conservation. It is therefore not self-evident what group, or what processes are connected with the low-energy outflow of ionospheric ions from Mars. Experimental and theoretical findings on ionospheric ion acceleration and outflow from Mars and Venus are discussed in this report.  相似文献   

    20.
    This paper describes a class of partially adaptive arrays with adaptive processing applied to the outputs of steered subarrays. The problem is to detect a signal or estimate its direction of arrival in the presence of jammers. The advantage of applying adaptive processing to subarrays is that it requires much less CPU time than the corresponding fully adaptive processing. The subarray processing equations for the two kinds of problem are described. In this paper, we compare partially adaptive processing performance with fully adaptive processing performance in the case of the following antenna and signal sources:
    • •- array with regularly spaced sensors ;
    • •- between 20 and 100 elements ;
    • •- between 3 and 20 subarrays ;
    • •- a single jammer ;
    • •- desired signal from the antenna zenith.
    We suggest a method for determining the optimal subarray configurations in this case. An example is given to show that the performance of an antenna with five subarrays is comparable to that of a fully adaptive thirty-element array for eliminating a single jammer with a target at the zenith.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号