首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gorbushina A 《Astrobiology》2003,3(3):543-554
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.  相似文献   

2.
为保证航空相机在平流层空间热环境下稳定运行,对无载荷舱的航空相机进行热设计和验证。基于20 km海拔高度下相机外部的对流及辐射环境特点,采用一维对称平板测试法确定选取多层隔热组件作为相机蒙皮材料,选取聚氨酯泡沫作为隔热填充材料。对载荷相机进行热控系统设计,并利用有限元软件分析极端工况下相机的温度场分布,最终设计热控总功率为240 W,包含为相机镜头除霜预留的部分热控功率。低气压热平衡试验验证结果与仿真分析结果吻合良好;低温工况下热控功率约占总功率的70%,控温点的温度波动在±1 ℃以内,满足相机控温精度要求。  相似文献   

3.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   

4.
We explore the aftereffects of stand-off burst mitigation on kilometer-scale rubble pile asteroids. We use a simple model of X-ray energy deposition to calculate the impulse transferred to the target, in particular to burst-facing blocks on the target surface. The impulse allows us to estimate an initial velocity field for the blocks on the outer side of the target facing the burst. We model the dynamics using an N-body polyhedron program built on the Open Dynamics Engine, a “physics engine” that integrates the dynamical equations for objects of general shapes and includes collision detection, friction, and dissipation.We tested several different models for target objects: rubble piles with different mass distributions, a “brick-pile” made of closely fitting blocks and zero void space, and a non-spherical “contact binary” rubble pile. Objects were bound together by self-gravity and friction/inelastic restitution with no other cohesive forces. Our fiducial cases involved objects of m=3.5×1012 kg (corresponding to a radius of 0.7 km for the bulk object), an X-ray yield of 1 megaton, and stand-off burst distances of R=0.8–2.5 km from the target center of mass.Kilometer-scale rubble piles are robust to stand-off bursts of a yield (Y1 megaton) that would be sufficient to provide an effective velocity change (Δv0.05ms1). Disaggregation involving some tens of percent of the target mass happens immediately after the impulse; the bulk of the object re-accretes on a few gravitational timescales, and the final deflected target contains over 95% (typically, 98–99%) of the original mass. Off-center components of the mitigation impulse and the target mass distribution cause a small amount of induced spin and off-axis components of velocity change. The off-axis velocity component amounts to an angular deviation of 0.05–0.1 radians from the nominal impulse vector, which may be important for mitigation planning.  相似文献   

5.
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances 相似文献   

6.
We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.  相似文献   

7.
The early orbital flights, although undertaken with considerable confidence, involved some uncertainty because of the impossibility of simulating under terrestrial conditions all of the conditions encountered in space. However, space-flight achievements by both the American astronauts and Soviet cosmonauts have firmly established that man, if appropriately selected, trained, and protected by suitable life-support systems, can perform efficiently for long periods of time in the hostile environment of space. We know that the side effects of vestibular origin pose important problems in space exploration, and the neurophysiological effects of any extensive, rapid adaptation processes in subgravity states have enabled a better understanding of man's compensatory capabilities. With the successful establishment of orbiting research laboratories, an unparalleled opportunity exists that will undoubtedly enable better understanding of the role played by gravity in normal terrestrial activity, not only as it affects our vestibular physiology, but also as it may or may not concern other systems and at different organizational levels in the body.  相似文献   

8.
Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO? and N?O. The NO? is then converted to ammonia, while the N?O is released back in the gas phase, which provides an abiotic source of nitrous oxide.  相似文献   

9.
The Inter-Agency Consultative Group (IACG) is an organization which seeks to maximize scientific returns from focused areas of space science through international cooperation. In its 11-year history the IACG has experienced both monumental success (with the collaborative exploration of Comet Halley) and, more recently, some serious growing pains in its second phase of operation, which focuses on solar terrestrial science. In this post-Cold War period, with increased interaction between countries offering greater opportunities for cooperation, the lessons to be learned from the IACG's experience will be valuable ones.  相似文献   

10.
11.
鉴于离心式加速度场模拟试验系统的需要,研制了一种大量程六维力传感器。在力传感器传统设计方法基础上,重点分析了传感器结构优化、材料选型、加工工艺、惯性耦合补偿等控制环节的影响。利用有限元方法对所设计的六维力传感器维间耦合、加速度场惯性效应耦合及输入输出关系进行仿真分析;借助相应的标定系统,实现六维力耦合效应的标定测试和耦合矩阵的获取,基于标定误差矩阵建立六维力传感器惯性效应补偿;静/动态实验结果表明所设计的大量程六维力传感器完全满足大加速场下力测试精度和稳定性要求。  相似文献   

12.
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.  相似文献   

13.
The onset of the Space Age had strong military overtones, but these were restrained by international agreement and the creation of civilian-led agencies such as NASA. Currently, however, a number of developments threaten to seriously undermine the concept of peaceful utilization of space, in particular the Strategic Defense Initiative, anti-satellite weapons research, and the routine intentional destruction of military satellites. There are nevertheless several factors mitigating military influence in space: the arrival of ‘non-superpowers’ as significant space explorers; greater ecological awareness; the virtual end of the Cold War; reaction against the cost and wastefulness of open-ended military expenditure; and the realization of the comparative efficiency of civil as opposed to military space expenditure in stimulating industry.  相似文献   

14.
Geosocio-economically useful lunar development requires adoption of a development strategy designed to balance investments and returns as attractively as possible. This paper deals with a systematic approach to developing early and profitable returns through an appropriate investment strategy and through cislunar and terrestrial market research. In addition, long-term aspects are outlined, including the production of helium-3 for terrestrial fusion power plants and of water from fusion products and lunar oxygen.  相似文献   

15.
Summers DP  Khare B 《Astrobiology》2007,7(2):333-341
Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).  相似文献   

16.
Holm NG  Andersson E 《Astrobiology》2005,5(4):444-460
The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.  相似文献   

17.
The tensor of permittivity for the system “electron beam - plasma of the interplanetary space” is derived in the approximation of geometrical optics. The problem is one-dimensional; all parameters such as density of the beam and of the solar wind plasma, and the induction of the interplanetary magnetic field are assumed to be dependent only on the distance to the Sun. The beam is generated by an active region during a solar flare, and it is a source of radio bursts of type III in the interplanetary space. The tensor of permittivity was obtained to close field equations by a material equation. On the basis of these equations it becomes possible to study theoretically the amplitude-frequency characteristics of the radio bursts as disturbances of the above-described beam-plasma system.  相似文献   

18.
This paper deals with the difficulty of decoding the origins of natural structures through the study of their morphological features. We focus on the case of primitive life detection, where it is clear that the principles of comparative anatomy cannot be applied. A range of inorganic processes are described that result in morphologies emulating biological shapes, with particular emphasis on geochemically plausible processes. In particular, the formation of inorganic biomorphs in alkaline silica-rich environments are described in detail.  相似文献   

19.
The magnetosphere and ionosphere response to arrival of large changes of the solar wind dynamic pressure with sharp fronts to the Earth is considered. It is shown that, under an effect of an impulse of solar wind pressure, the magnetic field at a geosynchronous orbit changes: it grows with increasing solar wind pressure and decreases, when the solar wind pressure drops. Energetic particle fluxes also change: on the dayside of the magnetosphere the fluxes grow with arrival of an impulse of solar wind dynamic pressure, and on the nightside the response of energetic particle fluxes depends on the interplanetary magnetic field (IMF) direction. Under the condition of negative Bz-component of the IMF on the nightside of the magnetosphere, injections of energetic electron fluxes can be observed. It is shown, that large and fast increase of solar wind pressure, accompanied by a weakly negative Bz-component of the IMF, can result in particless’ precipitation on the dayside of the auroral oval, and in the development of a pseudobreakup or substorm on the nightside of the oval. The auroral oval dynamics shows that after passage of an impulse of solar wind dynamic pressure the auroral activity weakens. In other words, the impulse of solar wind pressure in the presence of weakly negative IMF can not only cause the pseudobreakup/substorm development, but control this development as well.  相似文献   

20.
ABSTRACT

Knots can be found and used in a variety of situations in the 3D world, such as in vines, in the DNA, polymer chains, electrical wires, in mountaineering, seamanship and when ropes or other flexible objects are involved for exerting forces and holding objects in place. Research on knots as topological entities has contributed with a number of findings, not only of interest to pure mathematics, but also to statistical mechanics, quantum physics, genetics, and chemistry. Yet, the cognitive (or algorithmic) aspects involved in the act of tying a knot are a largely uncharted territory. This paper presents a review of the literature related to the investigation of knots from the topological, physical, cognitive and computational (including robotics) standpoints, aiming at bridging the gap between pure mathematical work on knot theory and macroscopic physical knots, with an eye to applications and modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号