首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present the results of the comparison of the retrieved electron density profiles of the Ionospheric Radio Occultation (IRO) experiment on board CHAMP (CHAllenging Minisatellite Payload), with the ground ionosonde profiles for the Polar Regions. IRO retrieved electron density profiles from CHAMP are compared with Canadian Advanced Digital Ionosonde (CADI) measurements at two vertical sounding stations well within the Polar Cap, Eureka (geog. 80°13′ N; 86°11′ W) and Resolute Bay (geog. 74°41′ N; 94°54′ W). We compared the ionospheric parameters such as the peak electron density of the F-layer (NmF2) and the peak height of the F-layer (hmF2) for a 3-year period, 2004–2006. CHAMP derived NmF2 shows reasonable agreement with the ionosonde retrieved NmF2 for both the stations (0.76 and 0.71 correlation coefficient, for Eureka and Resolute Bay, respectively) whereas the hmF2 agreement is not that acceptable (0.25 and 0.37 correlation coefficient, respectively). The hmF2 from vertical sounding showed less spread than the CHAMP hmF2.  相似文献   

2.
F-region vertical plasma drift velocities were deduced from the hourly hmF2 values acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4°N, 358.5°E, dip angle 5.9°N) in Africa. Our results are compared against the global empirical model of Scherliess and Fejer (1999) incorporated in the IRI model (IRI-2007) for 1600 to 0800 LT from 1 year of data during sunspot maximum year of 1989 (yearly average solar flux intensity, F10.7 = 192) corresponding to the peak phase of solar cycle 22, under magnetically quiet conditions. The drifts are entirely downward between 2000 and 0500 LT bin for both techniques and the root mean square error (RMSE) between the modeled and the ionosonde vertical plasma drifts during these periods is 3.80, 4.37, and 4.74 m/s for June solstice, December solstice and equinox, respectively. Ouagadougou average vertical drifts show evening prereversal enhancement (PRE) velocity peaks (VZP) of about 16, 14, and 17 m/s in June solstice, December solstice, and equinox, respectively, at 1900–2000 LT; whereas global empirical model average drifts indicate VZP of approximately 33 m/s (June solstice), 29 m/s (December solstice), and 50 m/s (equinox) at 1800 LT. We find very weak and positive correlation (+0.10376) between modeled VZP versus F10.7, while ionosonde VZP against F10.7 gives worst and opposite correlation (−0.05799). The results also show that modeled VZPAp indicates good and positive correlation (+0.64289), but ionosonde VZPAp exhibits poor and negative correlation (−0.22477).  相似文献   

3.
The nighttime vertical E × B drifts velocities of the F2-region were inferred from the hourly hmF2 values obtained from ionosonde data over an African equatorial station, Ilorin (8.50oN, 4.68oE; dip lat. 2.95o) during period of low solar activity. For each season, the plasma drift Vz is characterized by an evening upward enhancement, then by a downward reversal at 1900 LT till around 0000 LT, except for June solstice. This was explained using the Rayleigh–Taylor (R-T) instability mechanism. The occasional drift differences in Vz obtained by inferred and direct measurement over Ilorin and Jicamarca, respectively are reflective of the importance of chemistry and divergent transport system due to both the E region electric and magnetic fields instead of simple motions. The pre-reversal enhancement (PRE) magnitude is higher during the equinoctial months than the solsticial months over Jicamarca, highest during December solstice and the equinoctial months over Ilorin, suggesting the dominance of higher E × B fountain during equinoxes at both stations. The lowest PRE magnitude was in June solstice. The appearance of post-noon peak in NmF2 around 1700 LT is highest during the equinoctial months and lowest during the solsticial period. A general sharp drop in NmF2 around 1800 LT is distinct immediately after sunset, lowest during June solstice and highest in March equinox. Our result suggests that between 0930 and 2100 LT, the general theory that vertical drifts obtained by digisonde measurements only match the E × B drift if the F layer is higher than 300 km is reliable, but does not hold for the nighttime period of 2200–0600 LT under condition of solar minima. Hence, the condition may not be sufficient for the representation of vertical plasma drift at nighttime during solar minima. This assertion may still be tentative, as more equatorial stations needed to be studied for better confirmation.  相似文献   

4.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

5.
6.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

7.
The purpose of this research work is to validate the ionospheric models (IRI and CHIU) to assess its suitability and usefulness as an operational tool. The ionospheric model is a computer model designed to predict the state of the global ionosphere for 24 h. The scope was limited to conduct comparisons between the predicted F2 layer critical frequencies (f0F2) against observed ionosonde data. The ionospheric prediction model (IPM) was designed to predict by using monthly median sunspot number, while the observation data are taken from two digital ionospheric sounding stations (Okinawa, 26.28N, 127.8E and Wakkanai, 45.38N, 141.66E) which lies within the mid-latitude region of the globe. Analysis of the f0F2 data from stations for year (2001) with high solar activity and year (2004) with low solar activity, four months (March, June, September and December) chosen based primarily on data availability. From results it seen that the ratio between monthly median predicted and observed f0F2 values for each model used in this research work and for the chosen months was nonlinear with local time, so the empirical formula for applying correction factors were determined, these formula can be used to correct the error occurred in predicted f0F2 value.  相似文献   

8.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

9.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

10.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

11.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   

12.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

13.
In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip −24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March–April than in September–October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30–160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east–west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives the eastward electric fields.  相似文献   

14.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months).  相似文献   

15.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   

16.
A long temporal series of simulated ionograms was generated with a superimposed secular variation of −14 km/century on the hmF2 parameter. These ionograms were interpreted by the automatic scaling program Autoscala. By applying four different empirical formulas, four artificial series of hmF2 were generated and then processed with the same methods used by other authors for real data sets. Data analysis of the simulated ionograms revealed the artificially imposed long-term trend. These results lead to the conclusion, that regardless of the empirical formula used, the accuracy of hmF2 from ionosonde measurements would be adequate to observe a long-term trend of −14 km/century.  相似文献   

17.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

18.
Measurements of the critical frequency, foF2 recorded over Ibadan: 7.4°N, 3.9°E (geographic), 6°S (dip angle) have been compared with the International Reference Ionosphere (IRI-2007) model for solar maximum geomagnetically quiet conditions, with a view to determining what modifications might bring about better predictions for the model. Our results reveal that the present version of IRI essentially reproduces diurnal trends and the general features of the experimental observations for all seasons, except for nighttime June solstice periods, which the model seriously overestimated. The model errors ranging from 50% to 125% over the four seasons considered in this study. It is also indicated that the percentage relative deviations between the observed and the modeled values vary approximately from −11% to 12% (March), −34% to 11% (June), −16% to 12% (September), and −10% to 13% (December). An unexpected feature of foF2 is obvious and remarkable reduction in values during nighttime June solstice periods compared to that in other seasons. Relationship between equatorial vertical drift and foF2 is also investigated. However, cross correlation analysis reveals strong anti-correlation between vertical drift and critical frequency during the daytime hours, but exceptionally opposite is the case for the nighttime sector. The discrepancies which are noted, particularly during June solstice season are attributed to processes most likely within the thermosphere and from meteorological influences during quiet magnetic conditions.  相似文献   

19.
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F   layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.  相似文献   

20.
This study characterizes equatorial scintillations at L-band frequency over Lagos, Nigeria during the minimum and ascending phases of solar cycle 24. Three years (2009–2011) of amplitude scintillation data were used for the investigation. The data were grouped on daily, monthly, seasonal, and yearly scales at three levels of scintillation (weak (0.3 ? S4 < 0.4), moderate (0.4 ? S4 < 0.7), and intense (S4 ? 0.7)). To ensure reliable statistical inferences, three data cut-off criteria were adopted. Scintillations were observed to have a daily trend of occurrence during the hours of 1900–0200 LT, and higher levels of scintillations were localized within the hours of 2000–2300 LT. On monthly basis, September and October recorded the highest occurrences of scintillation, while January recorded the least. Scintillations were recorded during all the months of 2011, except January. Surprisingly, pockets of scintillation events (weak levels) were also observed during the summer months (May, June, and July). Seasonally, equinoxes recorded the highest occurrences of scintillation, while June solstice recorded the least occurrences. Scintillation activity also increases with solar and geomagnetic activity. On a scintillation active day, the number of satellites available to the receiver’s view reduces as the duration of observation reduces. These results may support the development of future models that could provide real-time predictability of African equatorial scintillations, with a view to supporting the implementation of GNSS-based navigation for aviation applications in Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号