首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Eric Dyke  Glenn A. Hrinda   《Acta Astronautica》2007,61(11-12):1029-1042
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.  相似文献   

2.
《Acta Astronautica》2008,62(11-12):1029-1042
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.  相似文献   

3.
J. Kotnik  D. Hayn 《Acta Astronautica》1979,6(9):1019-1030
In order to investigate a great area of Martian surface and atmosphere with one or few single systems it is obviously to see that a vehicle with no great propulsion and fuel system is required. A simple method will use the Martian winds and weather conditions to cover a large range by a helium filled balloon containing an automatic integrated payload. Different methods including a combination with a Marsochod vehicle are investigated. Perhaps these ideas could generate an international project using well known space technology for the enlargement of science and community in planetary research!  相似文献   

4.
Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented.  相似文献   

5.
Greenberg R 《Astrobiology》2011,11(2):183-191
Europa has become a high-priority objective for exploration because it may harbor life. Strategic planning for its exploration has been predicated on an extreme model in which the expected oceanic biosphere lies under a thick ice crust, buried too deep to be reached in the foreseeable future, which would beg the question of whether other active satellites might be more realistic objectives. However, Europa's ice may in fact be permeable, with very different implications for the possibilities for life and for mission planning. A biosphere may extend up to near the surface, making life far more readily accessible to exploration while at the same time making it vulnerable to contamination. The chances of finding life on Europa are substantially improved while the need for planetary protection becomes essential. The new National Research Council planetary protection study will need to go beyond its current mandate if meaningful standards are to be put in place.  相似文献   

6.
行星保护是每一个开展深空探测活动的国家都应遵守的国际化行为。基于我国深空探测任务中行星保护相关的微生物控制需求,文章首先分析了深空探测器在AIT(总装、集成和测试)阶段负载的微生物主要种类和来源,之后综述NASA和ESA采用的干热灭菌(DHMR)、气相过氧化氢(VHP)等微生物灭菌技术在行星保护任务中的应用与研究现状,最后对加快微生物灭菌技术研究以支持我国未来的行星探测任务提出建议。  相似文献   

7.
Moroz  V. I.  Huntress  W. T.  Shevalev  I. L. 《Cosmic Research》2002,40(5):419-445
Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.  相似文献   

8.
Planetary protection policies designed to reduce the cross-transfer of life on spacecraft from one planet to another can either be formulated from the pragmatic instrumental needs of scientific exploration, or from ethical principles. I address planetary protection concerns by starting from a normative ethical framework for the treatment of microorganisms. This argues that they have intrinsic value at the level of the individual through to the level of the community, but at the individual level this ethic can only be theoretical. This approach yields a solution to the problem of the inevitable contamination of Mars by human explorers and suggests that in some instances the local contamination of other planets may be acceptable. An exception would be where this contamination would cause destruction of microbial ecosystems. Within the framework of such an ethic, the term ‘planetary protection’ may be normatively too narrow and ‘planetary preservation’ may better describe the activity of controlling cross-inoculation of planets. I discuss an example of a contamination event that might be ethically acceptable within the framework of ‘preservation’, but would be regarded as unacceptable under current planetary ‘protection’ guidelines.  相似文献   

9.
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances 相似文献   

10.
New roles in space for the 21st century: a Uruguayan view   总被引:1,自引:0,他引:1  
Eduardo D. Gaggero   《Space Policy》2003,19(3):203-210
In the economic and social circumstances of the 21st century globalized world, there is a need to rethink the traditional roles and positions in space of international intergovernmental organizations, states, both developed and developing, and humankind itself. Uruguay provides an example of a non-typical country that has managed to carve an important niche for itself in the field of space law. Although globalization is an irreversible phenomenon, which has had a devastating effect on the weakest countries, following the attacks of 11 September 2001 insecurity has become globalized for everyone. From the point of view of a state such as Uruguay, this crisis must be looked upon as an opportunity to renew and inspire intelligence, education and culture. In this way—and by continuing to argue for a global space organization—it can contribute to making the Space Age an era of global and planetary solidarity for the benefit of humankind.  相似文献   

11.
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.  相似文献   

12.
Doughty CE  Wolf A 《Astrobiology》2010,10(9):869-879
Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.  相似文献   

13.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.  相似文献   

14.
We revisit the validity of the presence of O(2) or O(3) in the atmosphere of a rocky planet as being a biosignature. Up to now, the false positive that has been identified applies to a planet during a hot greenhouse runaway, which is restricted to planets outside the habitable zone (HZ) of the star that are closer to the star. In this paper, we explore a new possibility based on abiotic photogeneration of O(2) at the surface of a planet that could occur inside the HZ. The search for such a process is an active field of laboratory investigation that has resulted from an ongoing interest in finding efficient systems with the capacity to harvest solar energy on Earth. Although such a process is energetically viable, we find it to be a very unlikely explanation for the observation of O(2) or O(3) in the atmosphere of a telluric exoplanet in the HZ. It requires an efficient photocatalyst to be present and abundant under natural planetary conditions, which appears unlikely according to our discussion of known mineral photochemical processes. In contrast, a biological system that synthesizes its constituents from abundant raw materials and energy has the inherent adaptation advantage to become widespread and dominant (Darwinist argument). Thus, O(2) appears to continue to be a good biosignature.  相似文献   

15.
On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this “PHYSIOLAB” is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing.

Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP.

PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters.

This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This “second generation” laboratory should be developed in the frame of wide international cooperation.  相似文献   


16.
《Acta Astronautica》2003,52(2-6):371-379
Under constrained budgets and rigid schedules, NASA and industry have greatly increased their utilization of small satellites to conduct low-cost planetary investigations. Recent failed small planetary science spacecraft such as Mars Polar Lander (MPL) and Mars Climate Orbiter (MCO), and impaired missions such as Mars Global Surveyor (MGS) have fueled the ongoing debate on whether NASA's “Faster, Better, Cheaper” (FBC) approach is working. Several noteworthy failures of earth-orbiting missions have occurred as well including Lewis and the Wide-field Infrared Experiment (WIRE). While recent studies have observed that FBC has resulted in lower costs and shorter development times, these benefits may have been achieved at the expense of lowering probability of success. One question remaining to be answered is when is a mission “too fast and too cheap” that it is prone to failure? This paper assesses NASA FBC missions in terms of a complexity index measured against development time and spacecraft cost. A comparison of relative failure rates of recent planetary and earth-orbiting missions are presented, and conclusions regarding dependence on system complexity are drawn.  相似文献   

17.
As international partnerships increasingly look to be the way forward for sustainable human space exploration, the need to think about language protocols becomes more pressing. Using the historical examples of three international human spaceflight missions, this viewpoint shows how each language protocol was dictated by political realities and how often difficulties arose during implementation as a result. It is argued that, in order to optimize operational environments in future human space exploration, the international space community should adopt a standardized, single-language protocol, similar to commercial aviation. While English may appear to be the most obvious candidate, other languages, particularly Russian and perhaps even Chinese, may also be worth considering.  相似文献   

18.
王栋  邢帅  徐青  李晓波 《宇航学报》2015,36(10):1163-1171
以星体表面的图像数据为基础,根据撞击坑的向阳面呈亮色调而背阳面呈暗色调的原理,提出了一种基于图像的星体表面撞击坑自动提取方法。该方法先用自适应双阈值分割法对星体表面的光学图像进行分割处理,获取图像中明暗区域的形状和位置信息;再用统计学原理分析明暗区域组成结构、像平面上光照方向,结合相关的约束条件来匹配同一撞击坑的明暗区域,同时拟合出撞击坑的外边缘并确定其半径、位置等信息。实验结果表明,该方法能够从常见的星体表面光学图像中快速、可靠地提取出撞击坑的中心位置和半径大小,具有较宽的普适应性和一定的应用价值。  相似文献   

19.
Autonomous control has an increasing role in Earth and Space based applications. High level autonomy can greatly improve planetary exploration and is, in many cases, essential. It has been suggested during the Mars cave exploration programme, that an effective way to explore a larger surface area would be the use of many, small and fully autonomous robots. However, there are many challenges to overcome if such a swarm exploration programme is to be implemented. This paper summarises these challenges and focuses on one of the most crucial one: strategy. Many effective group exploration behaviours can be observed in nature, most of which are optimised to work with agents that have limited capabilities as individuals. For this paper a computer program has been written to simulate the way bees search for new hives and investigate whenever it is an optimal method to search for cave entrances on Mars. It has been found that this method, using simple autonomous robots which can be constructed using available technologies, could greatly improve the speed and range of a planetary exploration mission. The simulation results show that 50 swarm robots can cover an area of over 300 meters square completely in 5 sols while they are searching for cave entrances and returning results to the Lander which is a major performance improvement on any previous mission. Furthermore areas of interests found by the explorers are sorted in order of importance automatically and without the need of computational analysis, hence larger quantities of data were collected from the more important areas. Therefore the system – just like a hive of bees – can make a complex decision easily and quickly to find the place which matches the required criteria best. Using a high performance search strategy such as the one described in this paper is crucial if we plan to search for important resources or even life on Mars and other bodies in the solar system.  相似文献   

20.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号