首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
考虑温度环境下树脂基复合材料力学性能及模型研究   总被引:2,自引:1,他引:1  
采用试验的方法研究了T300/QY8911-Ⅳ复合材料不同温度环境(室温、160,200,260℃)下的纵向拉伸、横向拉伸及面内切变力学性能,探讨了材料的模量、强度随温度变化的规律并提出了相应的力学模型.试验结果表明:在室温至200℃复合材料纵向拉伸模量、强度受温度影响较小,拉伸模量最大变幅为2.82%,强度为1.41%;当温度升高到260℃时,由于树脂基体变质,材料纵向拉伸模量与强度均下降,模量下降5.85%,强度下降7.01%(均相对200℃);横向拉伸和面内切变模量、强度受温度的影响较大,在160℃范围内,材料的平均模量分别下降了49.21%和70.34%,强度下降了38.49%和44.85%.当温度升至200℃时,材料的横向拉伸及面内切变模量与强度进一步下降,模量降幅为25.13%和38.30%,强度降幅为0.41%和15.95%.拟合结果表明:3个力学模型均适用于不同温度、载荷类型下的数据分布规律,但模型Ⅱ与模型Ⅲ对数据的拟合更准确.   相似文献   

2.
采用热分析方法研究高活性802双马树脂的固化反应动力学特征,分析树脂固化度与固化温度、固化时间的关系,确定树脂固化制度150℃/1 h+180℃/2 h+200℃/4 h,制得MT300/802复合材料200℃固化T_g达到325℃,而相同固化温度XU292双马树脂T_g仅为234℃。进一步考察MT300/802复合材料室温、230、280及300℃的力学性能,结果表明,复合材料单向板280℃弯曲强度保持率达到了57%,300℃弯曲强度仍达到1 094 MPa,室温及高温层间剪切强度及面内剪切强度也表现出较高的性能水平,高活性802双马树脂及其复合材料固化温度相对较低而使用温度较高,能够满足航天领域耐高温主承力结构的应用要求。  相似文献   

3.
为了研究环境温度对陶瓷基复合材料拉伸性能的影响,在室温和800℃,1 000℃,1 200℃惰性气体保护环境下开展了二维编织SiC/SiC复合材料的拉伸试验。采用数字图像相关技术采集了高温环境下试件的变形数据。通过光学显微镜和扫描电子显微镜拍摄了试件的断口形貌。结果表明:800~1 200℃内,二维编织SiC/SiC复合材料的拉伸应力-应变响应同样具有明显的双线性特征,初始线性段的弹性模量与室温测试结果相近,高温环境下第二线性段弹性模量低于室温环境;800~1 200℃惰性气体环境下材料拉伸强度较室温环境低20%左右;温度主要影响材料中纤维与基体的结合状态和SiC纤维的强度。一方面,温度越高断口纤维拔出情况越严重;另一方面,温度越高SiC纤维强度越低,二维编织SiC/SiC复合材料强度也有所下降。  相似文献   

4.
RFI工艺成型两种环氧树脂基复合材料性能比较   总被引:1,自引:0,他引:1       下载免费PDF全文
采用RFI工艺分别成型了648和5228A环氧树脂基复合材料层合板,其增强材料为碳纤维无屈曲织物,铺层方式为[(0,90)/( 45)]s;测试了两组层舍板的拉伸性能、弯曲性能和层间剪切性能并做了比较分析;对破坏形式和机理进行了探讨.结果表明:5228A相对于648环氧树脂膜有较宽的低黏度区域,较长的凝胶时间;5228A与648层合板相比,拉伸强度高106%,拉伸模量、泊松比接近;弯曲强度高58%,弯曲模量高16%;层间剪切强度高62%.  相似文献   

5.
文摘采用材料超高温力学性能设备及高温应变测试系统,对针刺C/C复合材料拉伸、压缩性能进行了研究。结果表明:针刺C/C复合材料具有明显的拉、压双模量特性,拉、压模量均随着温度的升高而线性下降,且拉伸模量下降更快;针刺C/C复合材料拉伸、压缩强度均随温度升高而先升高后降低,1 600℃时拉伸强度达到最大值,1 200℃时压缩强度达到最大值;其拉伸破坏为脆性断裂,断口呈现45°豁口;其压缩破坏为典型剪应力引起的压缩失效,破坏面倾角为40°~50°。  相似文献   

6.
为了研究高温环境碳/碳复合材料面内剪切疲劳特性,以含防氧化涂层的[±45] 4S 铺层碳/碳复合材料为研究对象,开展了 室温和700 ℃下的拉/拉疲劳试验。结果表明:碳/碳复合材料面内剪切剩余刚度变化呈横向的“S”形,对比室温环境,在700 ℃下 碳/碳复合材料面内剪切疲劳在中期损伤时的刚度降低趋势更为明显,在室温时发生疲劳断裂的剩余刚度为初始刚度的82%,而 在700 ℃下则降低至初始刚度的68%;在室温环境下碳/碳复合材料在33%和66%循环数后的面内剪切剩余强度分别为初始强度 的95.20%和85.70%,当温度升高为700 ℃时,分别为96.43%和85.59%。基于损伤因子的刚度和强度表征,考虑温度、应力水平的 影响,建立了碳/碳复合材料剩余刚度、剩余强度模型,较好地拟合了试验数据,高精度地获得了室温和700 ℃下碳/碳复合材料面 内剪切疲劳剩余刚度、剩余强度理论曲线,为后续复杂碳/碳复合材料结构件疲劳寿命预测提供了重要数据。  相似文献   

7.
针对Z-pin增强复合材料层合板的拉伸性能进行了试验研究及模拟分析.拉伸试验研究了3种铺层方式的层合板:[0]6;[90]12;[45/0/-45/90]2S.模拟分析将根据引入Z-pin造成的复合材料层合板微观结构变化建立单胞模型来进行,通过调整单元材料坐标系的1方向来模拟Z-pin周边纤维偏转.通过试验研究和模拟分析得出了Z-pin对3种层合板拉伸强度的影响程度.研究表明Z-pin引入造成的面内纤维含量降低(由树脂富裕区引起)和纤维方向偏转(包括纤维面内偏转和厚度方向卷曲)是层合板拉伸性能降低的主要原因.通过模拟分析进一步得出:对于[0]6铺层层合板,Z-pin插入引起的纤维面内偏转是面内拉伸强度降低的主要因素;对于准各向同性层合板,Z-pin插入产生的树脂富裕区(降低了纤维含量)是面内拉伸强度降低的主要因素.  相似文献   

8.
研究了不同温度对高硅氧/有机硅复合材料弯曲性能的影响;采用红外光谱仪对甲基苯基硅树脂在室温~600℃的结构进行了表征;使用热重分析仪,对基体树脂的热稳定性进行了测量;通过动态热机械分析仪对复合材料的动态力学性能进行了测定;采用扫描电镜对复合材料弯曲断口的形貌进行了观察。,结果表明,室温~600℃范围内弯曲强度随温度的升高而降低,弯曲强度在200℃,300℃,600℃分别出现了明显的降低。复合材料的玻璃化转变、树脂分解和裂解是弯曲性能下降的主要原因。  相似文献   

9.
蔡立成  钱诗梦  汪海晋  丁会明  徐强 《航空学报》2021,42(2):423821-423821
为了探究铺放工艺参数的变化对复合材料厚度方向力学行为的影响,通过面外拉伸实验分析了铺放压力与铺放温度对复合材料厚度方向面外拉伸强度与拉伸模量的影响,并对不同铺放工艺的试件失效模式进行了分析。试验结果表明,增大铺放压力会减小层间富树脂区厚度,使复合材料面外拉伸强度不断增大,当铺放压力为0.225 MPa时取得实验组最大值,与铺放压力0.075 MPa相较强度提升约13.1%,失效模式由纤维断裂与纤维层剥离的组合转变为纤维断裂;铺放压力的进一步增大会挤压层间树脂,改变树脂富集形态,使面外拉伸强度下降,剥离失效模式再度出现。实验用复合材料的适宜铺放温度为30℃,过高的铺放温度会导致孔隙率的上升,使复合材料的面外拉伸强度严重下降,裂纹扩展失去规律性;与铺放温度25℃相比,铺放温度为45℃时复合材料面外拉伸强度下降达19.2%,失效模式由纤维断裂与纤维层剥离的组合失效转化为单一的纤维层剥离失效。  相似文献   

10.
PMR型增韧聚酰亚胺的制备与性能研究   总被引:2,自引:0,他引:2  
制备了系列PMR型聚酰亚胺基体树脂以及碳纤维增强复合材料(HFPI),系统研究了PMR型聚酰亚胺HFPI基体树脂及复合材料性能.制备的PMR型聚酰亚胺HFPI基体树脂溶液具有良好的储存稳定性,室温下可以存放4个月,不产生沉淀;PMR型聚酰亚胺HFPI基体树脂具有良好的成型性以及优异的热稳定性,热分解温度高达540℃、玻璃化转变温度达到290℃(DMA)、热膨胀系数在40~50ppm/℃之间、较低吸水率(1.0%~1.7%)、优异力学性能;用短切碳纤维增强HFPI,基体树脂与碳纤维具有良好黏附性,制备的复合材料除了具有良好加工成型性能外,更具有优异力学性能,拉伸强度高达107.3MPa,断裂伸长率为5.73%,弯曲强度和弯曲模量分别高达159.8MPa,6.11GPa.  相似文献   

11.
赵哲  温卫东  宋健  王柱成 《航空动力学报》2017,32(11):2729-2736
通过室温(20℃)及高温(180℃)静态拉伸及拉 拉疲劳试验,获得了25维树脂基机织复合材料在不同温度下的力学性能及拉 拉疲劳寿命。基于宏观试验,探讨了材料在静载及拉 拉疲劳载荷作用下的破坏模式和失效机理,对比了材料在疲劳载荷作用后的剩余强度与静强度的关系,之后分析了温度对材料静态力学性能及疲劳寿命的影响。结果表明:在20~180℃温度范围内材料的纬向模量对温度不敏感,但纬向强度及疲劳寿命随温度的升高而显著下降。在高温高应力水平(高于80%静强度)下材料的纬向疲劳寿命非常短(小于104次循环),但当应力水平仅下降2%后,材料的纬向疲劳寿命趋于106次循环。另外,高温下材料的剩余强度大于高温静强度。   相似文献   

12.
研究热等静压温度对定向层片组织常规铸造 TiAl 合金层片分解程度和室温拉伸性能的影响,以期优选出适于定向层片组织的热等静压温度。结果表明:在1250℃热等静压处理,析出过多的等轴γ晶粒,降低了该合金的室温拉伸强度;在1290℃热等静压处理,发生层片粗化和生成随机取向二次层片,破坏了取向一致性,降低了室温拉伸性能的稳定性。在1270℃等静压处理,等轴γ晶粒析出量较少,且未见明显的层片粗化和二次层片,所得组织保持较好的层片组织完整性和取向一致性,并表现出最佳的室温强度、塑性和性能稳定性。确定适于定向层片组织铸造 TiAl 合金的热等静压温度是1270℃。  相似文献   

13.
研究了固化温度对苎麻纤维增强复合材料力学性能的影响,同时对比研究了平纹苎麻织物、单向苎麻纤维和单向玻璃纤维增强复合材料的力学性能.结果表明:环氧树脂3233分别在120℃,140℃和l80℃固化2h后,其拉伸性能和弯曲性能没有明显的变化;而基于环氧树脂3233的苎麻纤维增强复合材料在120℃和l40℃固化2h后力学性能相当,但是在180℃固化2h后,强度明显减小,模量变化不大;单向苎麻纤维增强复合材料的力学性能要远远大于平纹苎麻织物增强复合材料的力学性能,如单向苎麻复合材料uRamie-3233-120的压缩强度和压缩模量分别为154.0 MPa和35.6 GPa,而苎麻织物增强复合材料fRamie-3233-120分别为95.0 MPa和9.2 GPa;玻璃纤维增强复合材料的强度也会高明显高于苎麻纤维增强复合材料的强度.  相似文献   

14.
田文平  肖军  李金焕  徐挺  刘婷 《航空学报》2016,37(11):3520-3527
以空间光学结构应用为背景,对新研制改性氰酸酯树脂低温固化体系开展评价研究,包括树脂体系的固化特性、力学性能、耐湿热性以及工艺性能等;与HS40高模量碳纤维复合制备了复合材料,对其主要力学性能进行了研究。结果表明,改性氰酸酯树脂催化体系具有优异的固化反应特性,起始固化温度为101.2℃,较未催化的氰酸酯树脂降低了97.4℃;拉伸性能以及弯曲性能均有提高,同时其沸水饱和吸水率仅1.3%左右,明显低于双马(4%)和环氧树脂(5.8%);树脂的工艺性良好,适合热熔法制备预浸料;应用热熔浸渍法制备的HS40碳纤维/氰酸酯树脂预浸料经层合固化后力学性能优异:纵向拉伸强度和模量分别为2 244.5 MPa和248.0 GPa。  相似文献   

15.
作为一种功能性钛合金,Ti40阻燃钛合金的热物理性能数据首次被报道。采用真空自耗电弧熔炼技术制备的Ti40合金铸锭成分均匀,利用热挤压开坯+包套保护锻造方法制备的板坯组织均匀。性能测试结果表明:Ti40合金的室温抗拉强度为950 MPa级,且在500℃下具有良好的热暴露性能、高温蠕变性能和高温持久性能。在室温到600℃范围内,合金的杨氏模量和剪切模量随着温度的升高呈线性下降,泊松比随着温度升高而缓慢增加;线性热膨胀曲线随着温度升高呈抛物线增加,平均线膨胀系数随着温度的升高呈线性增加。  相似文献   

16.
采用粉末冶金热等静压技术制备了HIP-Re纯铼材料,分析了不同热处理状态对材料微观结构及室温和高温性能的影响。结果表明,热处理温度对材料拉伸性能影响较大,经1 800℃/1.5 h真空处理HIP-Re抗拉强度达到1 196 MPa,伸长率为19.1%;2 000℃抗拉强度达到69 MPa,伸长率达17%以上。粉末冶金铼的晶粒组织多为2~8μm细小等轴晶,HIP-Re断裂方式为沿晶断裂与穿晶断裂共同作用,高温断裂方式为晶间断裂与滑移断裂,在拉伸形变过程中,Re材料内部产生了大量协变的裂纹及微孔,裂纹扩展连接导致断裂。  相似文献   

17.
对PBO纤维的干纱、复丝以及单向复合材料的拉伸性能进行实验测试,探讨了测试标准对PBO复丝性能的影响,采用SEM观察了PBO纤维表面形貌和复合材料拉伸破坏断口特征,并与F-12纤维相应的拉伸性能进行了对比。结果表明:PBO纤维单向复合材料比F-12纤维具有更为杰出的拉伸性能,拉伸强度比F-12高约28.3%~55.4%、拉伸模量高约80%。PBO纤维复丝性能因测试标准不同其拉伸强度和拉伸模量相差较大。SEM观察到PBO纤维表面极光滑,与树脂界面粘结差,其复合材料拉伸破坏断口呈“皮芯”抽离和纤维撕裂破环特征。  相似文献   

18.
对E51环氧树脂改性双酚A型氰酸酯(BADCy)体系的力学性能及热性能进行了研究,发现当E51环氧树脂的质量含量为5%时,改性体系的弯曲强度和冲击强度分别由原来的95.6MPa和9.24kJ/m2提高到了117.8MPa和12.6kJ/m2,而热变形温度仅下降8℃。以该改性体系为基体制作的M40J复合材料,其弯曲强度、模量和剪切强度分别高达:1270MPa,172GPa,68 9MPa。消泡剂BYK141能提高M40J/BADCy复合材料的力学性能,层间剪切强度可提高到77.1MPa。M40J/BADCy复合材料还具有良好的耐环境能力,是一种理想的航空航天结构材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号