首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

2.
The planned NASA sample acquisition flight missions to Mars pose several interesting planetary protection issues. In addition to the usual forward contamination procedures for the adequate protection of Mars for the sake of future missions, there are reasons to ensure that the sample is not contaminated by terrestrial microbes from the acquisition mission. Recent recommendations by the Space Studies Board (SSB) of the National Research Council (United States), would indicate that the scientific integrity of the sample is a planetary protection concern (SSB, 1997). Also, as a practical matter, a contaminated sample would interfere with the process for its release from quarantine after return for distribution to the interested scientists. These matters are discussed in terms of the first planned acquisition mission.  相似文献   

3.
The ESA MarsNet mission proposal consists most probably of a trio of Mars landers. These landers each contain a variety of scientific equipment. The network of stations demands for a definition of its planetary protection requirements. With respect to the MarsNet mission only forward contamination problems will be considered. Future involvement of European efforts in planetary exploration including sample returns will also raise the problem of back contamination. A tradeoff study for the overall scientific benefit with respect to the approximative cost is necessary. Planetary protection guide-lines will be proposed by an interdisciplinary and international board of experts working in the fields of both biology and planetary science. These guide-lines will have to be flexible in order to be modified with respect to new research results, e.g. on adaptation of microorganisms to extreme (space) conditions. Experiments on the survival of microorganisms at conditions of simulated Mars surface and subsurface will have to be conducted in order to obtain a baseline data collection as a reference standard for future guide-lines.  相似文献   

4.
Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates.  相似文献   

5.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   

6.
Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension.  相似文献   

7.
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.  相似文献   

8.
Man is now entering an era of colonizing the moon and exploration of Mars. The crewmembers of a piloted mission to Mars will be exposed to inner belt trapped protons, the outer trapped electrons, and the galactic cosmic radiation. In addition there is always the added risk of acute exposure to a solar particle event. Current radiation risk is estimated using the idea of absorbed dose and ICRP-26, LET-dependent quality factors. In a spacecraft with aluminum walls (2 g cm-2) at solar minimum the calculated dose equivalent is 0.73 Sv for a 406-day mission. Based on the current thinking this leads to an excess cancer mortality in a 35 year male of about 1%. About 75% of the dose equivalent is contributed by HZE particles and target fragments with average quality factors of 10.3 and 20, respectively. The entire concept of absorbed dose, quality factor, and dose equivalent as applied to such missions needs to be reexamined, in light of the fact that less than 50% of the nuclei in the body of the astronaut would have been traversed by a single GCR nuclei in the 406-day mission. Clearly, more biologically relevant information about the effects of heavy ions and target fragments is needed and fluence based risk estimation strategy developed for such long term stays in space.  相似文献   

9.
As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.  相似文献   

10.
Societal and non-scientific factors represent potentially significant impediments for future Mars missions, especially in areas involving planetary protection. This paper analyzes public concerns about forward contamination to Mars and back contamination to Earth, evaluates major areas where lack of information may lead to uncontrollable impacts on future missions, and concludes that NASA should adopt a strategy that actively plans both the generation and subsequent management of planetary protection information to ensure that key audiences obtain needed information in a timely manner. Delay or avoidance in dealing with societal issues early in mission planning will increase the likelihood of public opposition, cost increases and missed launch windows. While this analysis of social and non-scientific considerations focuses on future Mars missions, the findings are also relevant for RTG launches, nuclear propulsion and other NASA activities perceived to have health, safety or environmental implications.  相似文献   

11.
This paper presents the set of specific problems in manned Mars mission, connected with human factor, and scientific approaches for their resolution. The concept of multifunctional medical Complex for Martian spacecraft is discussed.  相似文献   

12.
The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.  相似文献   

13.
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history.  相似文献   

14.
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.  相似文献   

15.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

16.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

17.
Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.  相似文献   

18.
Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR-station during the EUROMIR-94-mission. We present LET-spectra determined separately for long range cosmic ray heavy ions and for short range target fragments produced in nuclear interactions of cosmic rays and measured charge distributions for relativistic and stopping particles.  相似文献   

19.
This paper presents the reliability-based sequential optimization (RBSO) method to settle the trajectory optimization problem with parametric uncertainties in entry dynamics for Mars entry mission. First, the deterministic entry trajectory optimization model is reviewed, and then the reliability-based optimization model is formulated. In addition, the modified sequential optimization method, in which the nonintrusive polynomial chaos expansion (PCE) method and the most probable point (MPP) searching method are employed, is proposed to solve the reliability-based optimization problem efficiently. The nonintrusive PCE method contributes to the transformation between the stochastic optimization (SO) and the deterministic optimization (DO) and to the approximation of trajectory solution efficiently. The MPP method, which is used for assessing the reliability of constraints satisfaction only up to the necessary level, is employed to further improve the computational efficiency. The cycle including SO, reliability assessment and constraints update is repeated in the RBSO until the reliability requirements of constraints satisfaction are satisfied. Finally, the RBSO is compared with the traditional DO and the traditional sequential optimization based on Monte Carlo (MC) simulation in a specific Mars entry mission to demonstrate the effectiveness and the efficiency of the proposed method.  相似文献   

20.
The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Russian MARS mission in 1996, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium detectors, associated electronics, and a passive cooler and will be deployed from one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the Martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 keV to 8 MeV in 4096 energy channels. The first results are presented of development, integration and qualification of the instrument, both for the passive cooler and for the detector with spectrometric electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号