首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.  相似文献   

2.
Contributions of space exploration which are widely recognized are those dealing with the impact of space technology on public health and medical services in both urban and remote rural areas. Telecommunications, image enhancement, 3-dimensional image reconstructions, miniaturization, automation, and data analysis, have transformed the delivery of medical care and have brought about a new impetus to the field of biomedicine. Many areas of medical care and biological research have been affected. These include technological breakthroughs in such areas as: (1) diagnosis, treatment, and prevention of cardiovascular diseases, (2) new approaches to the understanding of osteoporosis, (3) early detection of genetic birth defects, (4) emergency medical care, and (5) treatment of chronic metabolic disorders. These are but a few examples where technology originally developed to support space medicine or space research has been applied to solving medical and health care delivery problems on Earth.  相似文献   

3.
In the past, space life sciences has focused on gaining an understanding of physiological tolerance to spaceflight, but, for the last 10 years, the focus has evolved to include issues relevant to extended duration missions. In the 21st century, NASA's long-term strategy for the exploration of the solar system will combine the assurance of human health and performance for long periods in space with investigations aimed at searching for traces of life on other planets and acquiring fundamental scientific knowledge of life processes. Implementation of this strategy will involve a variety of disciplines including radiation health, life support, human factors, space physiology and countermeasures, medical care, environmental health, and exobiology. It will use both ground-based and flight research opportunities such as those found in current on-going programs, on Spacelab and unmanned biosatellite flights, and during Space Station Freedom missions.  相似文献   

4.
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.  相似文献   

5.
6.
The third team to inhabit the Advanced Life Support Test Chamber at the Johnson Space Center participated in an interview about life in the test chamber and program goals. Questions examine the air and water systems; human factors such as life in confinement, privacy, health, and training; and exercise. The test chamber is used to test life support systems for the International Space Station, lunar bases, and manned missions to Mars.  相似文献   

7.
For decades, Western European nations have been comparatively uninterested in the military use of space, largely content to rely on the far greater resources of the USA in this area. Today, however, the traditional belief that the security requirements of ‘the West’ are synonymous with those of the USA is increasingly open to challenge. A new European defence identity is emerging, keen to achieve greater autonomy in the security field, albeit remaining within the overarching framework of NATO. Consequently there is a growing requirement for indigenous European capabilities in terms of military space assets. This requirement has been met in part by the establishment, by the Western Union, of a satellite centre in Spain, which currently analyses commercially procured satellite imagery. The centre's capabilities may be expanded if the WEU states decide to add a space-based element — either their own satellite system, or participation in an existing multinational programme. Such a decision is due to be taken towards the end of 1995. This paper concludes by briefly examining the political and security implications of such a decision.  相似文献   

8.
Considerable progress has been made in recent years on development of candidate physico-chemical components for use in regenerative life support systems (LSS) for future extended-duration-mission spacecraft; these life support systems provide air revitalization including carbon dioxide reduction, water reclamation, and limited waste management. For still longer duration manned space flights, such as a permanently inhabited space station, it is generally recognized that development of biological life support systems capable of generating food and regenerating wastes will be essential to reduce logistics costs.  相似文献   

9.
Satellite technology is still a deep mystery for most of the people in the world, because there is little access to satellites, even through the media. A process has been devised to build a low-cost educational cardboard model of a communication satellite, using light beams to simulate the radio links. The construction of the model follows closely the construction process of a real satellite, and can help to understand the general technology, while producing an attractive “toy.”  相似文献   

10.
The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.  相似文献   

11.
The paper deals with the construction of physical/chemical life support systems of orbiting space station Mir and the Russian segment of the international space station (ISS). Based on experience gained in development and long-term operation of systems for water recovery and air revitalization balance and energy/mass characteristics of promising life support systems (LSS) are analyzed. Physical/chemical life support systems with regenerative systems updated as a result of the operation on the ISS may be used at an initial phase of manned interplanetary missions.  相似文献   

12.
Lawrence A. Cooper   《Space Policy》2003,19(2):111-118
Two major treaties define the legal framework of space, the Outer Space and Moon Treaties. The former prevents conflict and ensures free access in space, in part by preventing property claims in space, while the latter in part established the need for sharing space resources between the developed and less developed nations. Several groups argue that this has unintentionally restrained space commerce. Discussions supporting or expanding the current legal regime are contrasted with allowing individual property rights. A normative solution is suggested for establishing property rights and establishing equity between the developed and less developed nations.  相似文献   

13.
D. Stone  C. Welch   《Space Policy》2002,18(3):233
This report describes the background to and rationale for World Space Week, now an annual event aiming to increase public awareness of the benefits of peaceful space use and to act as an educational tool for the young. Examples of typical activities in a variety of countries are presented. The report concludes with recommendations—such as rescheduling existing events to the period of World Space Week—to make the event even more successful.  相似文献   

14.
Over 200 school children in eight schools in the east of England were surveyed to determine their interest in space exploration and awareness of current space activities. Of those surveyed, 33% were interested in space to ‘discover a new planet’, and 24% to find life on another planet. When asked to list space exploration organisations 77% listed NASA. Six of those surveyed listed ESA (<0.5%). The data bring starkly to light, despite the Huygens landing on Titan and Mars Express, the lack of awareness of the existence of ESA among a new generation of European school children. These data suggest that further surveys are merited to determine the factors that influence interest in space sciences and related disciplines among school children, and the source of their information.  相似文献   

15.
A multidisciplinary group of students from the university and latter also from the high school was formed in 1988 with the objective to make them put in practice their knowledge in physics, chemistry and mathematics and engineering fields in experimental rocketry. The group was called “Grupo de Foguetes Experimentais”, GFE.Since that time more than 150 students passed throw the group and now many of them are in the space arena.The benefits for students in a space hands-on project are many:
1. More interest in their school subjects is gotten as they see an application for them;
2. Interrelation attitudes are learned as space projects is a team activity;
3. Responsibility is gained as each is responsible for a part of a critical mission project;
4. Multidisciplinary and international experience is gotten as these are space project characteristics;
5. Learn how to work in a high stress environment as use to be a project launch.
This paper will cover the educational experiences gotten during these years and how some structured groups work. It is explained the objectives and how the group was formed. The group structure and the different phases that at each year the new team passes are described. It is shown the different activities that the group uses to do from scientific seminars, scientific club and international meetings to technical tours and assistance to rocket activities in regional schools.It is also explained the group outreach activities as some launches were covered by the media in more then 6 articles in newspaper and 7 television news.In 1999 as formed an official group called NATA, Núcleo de Atividades Aerospaciais within the Universidade Estadual de Londrina, UEL, by some GFE members and teachers from university. It is explained the first group project results.  相似文献   

16.
用变结构控制(VSC)法增大仿真转台的带宽。根据被控对象的数学模型,通过模型转化给出了VSC控制器的控制律,并用符号函数连续化削弱振颤。数学和半实物仿真结果表明,采用该VSC控制器的仿真转台控制系统具有良好的快速性和鲁棒性。  相似文献   

17.
There is increasingly broad concern in the USA today about the quality, vibrancy and appeal of science and technical education in general and space education in particular. There needs to be a robust link between the educational community (i.e. the primary and secondary schools as well as colleges and universities) and a well-defined space research and exploration agenda that is strongly supported by the space industry, NASA and other relevant US governmental agencies. Without such a renewal of mission and new goals it will be difficult to re-invigorate and expand quality space education programs. A workshop was therefore convened in 2003 to analyze the problem, discuss new initiatives, organize a survey inviting suggestions from a range of relevant players and draw conclusions on what the USA needs to do to improve space education in the 21st century. Although the focus of this workshop was on space education in the USA the international dimensions of this problem were also addressed and the firm conclusion was reached that similar issues and concerns apply in Europe, Canada, Japan and other spacefaring nations. This article is an edited version of a White Paper subsequently produced to highlight the problem, summarize the proceedings of the workshop and present the results of the survey. Greater clarity in the definition of national space goals, the upgrading of teachers’ skills and an increase in technical scholarships are among the steps recommended.  相似文献   

18.
The relatively weak uptake of spatial error handling capabilities bycommercial GIS companies and users can in part be attributed to therelatively low availability and high costs of spatial data qualityinformation. Based on the well established artificial intelligencetechnique of induction, this paper charts the development of anautomated quality capture tool. By learning from example, the tool makesvery efficient use of scarce spatial data quality information, sohelping to minimise the cost and maximise availability of data quality.The example application of the tool to a telecommunications legacy datacapture project indicates the practicality and potential value of theapproach.  相似文献   

19.
20.
与射频通信相比,空间激光通信具有传输速率高、保密性能强、终端功耗低等优点,目前已成为当前通信领域的一个研究热点。同时,空间激光通信也面临着一些严峻的技术挑战,如大气湍流导致空间激光通信的信道情况十分复杂,复杂的信道会引发信号光强度起伏剧烈,信标光跟踪与瞄准困难,接收端的信号光场波前畸变严重等。为了提升空间激光通信在复杂信道环境中的性能,学者们将深度学习技术引入到空间激光通信系统中。多项研究表明,深度学习在空间激光通信的诸多方面表现出了优越的信息处理能力。对近年来深度学习技术在空间激光通信信号处理与检测,信标光捕获与跟踪以及波前畸变探测与校正等方面的应用做一全面梳理,并对用于空间激光通信的深度学习技术的前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号