首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews major developments in our understanding of the physics of energetic heavy ions in the Earth's plasma environment during the past four years (1974–1977). Emphasis is placed on processes that influence or are influenced by the ion charge states. This has been a period of growing awareness of the important role heavy ions play in space plasmas. Large fluxes of helium ions and even heavier ions have been observed at the geostationary altitude and in the heart of the radiation belts. Such ions have also been observed on low latitude rockets and satellites, and oxygen ion precipitation exceeding that of protons has been reported. In the outer parts of the Earth's plasma envelope there is mounting evidence for significant fluxes of heavy ions: in the magnetotail, the magnetosheath and in the polar cusp regions. In the inner magnetosphere there is a limited theoretical understanding of equatorially mirroring ions, but generally only radial diffusion at one pitch angle and pitch angle diffusion at one L- shell have been studied; for ions the coupled equations are yet unsolved even for the simplest case of only one charge state (protons). Theoretical modeling of the charge state structures of geophysical heavy ion populations is in part frustrated by the lack of adequate laboratory measurements of the pertinent charge exchange cross sections. A first attempt has, however, been made to treat the charge state transformation processes in the radiation belts for equatorially mirroring atomic oxygen ions. Wave-particle interactions in the magnetosphere become much more complex in multi component and multi charge state plasmas where hybrid resonances and wave-particle interaction induced non-linear species-species coupling could be important. Heavy ion plasma physics in the Earth's magnetosphere and in the magnetospheres of other planets should be a field of fruitful study for both experimentalists and theoreticians in the years ahead.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

2.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

3.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/E1.5–3) instruments and focused on the morphology of x-rays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.  相似文献   

4.
X-Rays From Mars     
X-rays from Mars were first detected in July 2001 with the satellite Chandra. The main source of this radiation was fluorescent scattering of solar X-rays in its upper atmosphere. In addition, the presence of an extended X-ray halo was indicated, probably resulting from charge exchange interactions between highly charged heavy ions in the solar wind and neutrals in the Martian exosphere. The statistical significance of the X-ray halo, however, was very low. In November 2003, Mars was observed again in X-rays, this time with the satellite XMM-Newton. This observation, characterized by a considerably higher sensitivity, confirmed the presence of the X-ray halo and proved that charge exchange is indeed the origin of the emission. This was the first definite detection of charge exchange induced X-ray emission from the exosphere of another planet. Previously, this kind of emission had been detected from comets (which are largely exospheres) and from the terrestrial exosphere. Because charge exchange interactions between atmospheric constituents and solar wind ions are considered as an important nonthermal escape mechanism, probably responsible for a significant loss of the Martian atmosphere, X-ray observations may lead to a better understanding of the present state of the Martian atmosphere and its evolution. X-ray images of the Martian exosphere in specific emission lines exhibited a highly anisotropic morphology, varying with individual ions and ionization states. With its capability to trace the X-ray emission out to at least 8 Mars radii, XMM-Newton can explore exospheric regions far beyond those that have been observationally explored to date. Thus, X-ray observations provide a novel method for studying processes in the Martian exosphere on a global scale.  相似文献   

5.
Ebihara  Yusuke  Ejiri  Masaki 《Space Science Reviews》2003,105(1-2):377-452
Numerical simulation of the terrestrial ring current is reviewed. After mentioning ‘modules’ which are needed to be taken into consideration in a ring current simulation, we discuss growth and decay of the ring current. At least four different paradigms have been proposed to account for the ring current development in the past forty years, i.e., the convection paradigm, the substorm paradigm, the diffusion paradigm, and the ionosphere paradigm. As for the proton ring current, a simulation under the convection paradigm gives reasonable results which are in fair agreement with observations with respect to the Dst variation as well as the radial and longitudinal energy density variation of protons when the convection electric field depending on solar wind parameters is given. The proton energy density is observed to be enhanced (weakened) on the nightside, and be weakened (enhanced) near noon during a storm main phase (recovery phase). This characteristic is probably understood to mean that a large-scale and long-standing electric field dominates other electric fields during the storm main phase, e.g., a locally induced electric field (the substorm paradigm) and a highly fluctuated electric field (the diffusion paradigm). The declining of the ring current is shown to be triggered by the decrease in the convection electric field at the beginning of a storm recovery phase, but the decrease in the convection electric field hardly contributes the decay of the ring current. The charge exchange or other loss processes is needed for the substantial decay of it. An ultimate decay rate (several hours) is achieved when the strong diffusion takes place, or when the plasma sheet density drastically decreases while the charge exchange is estimated to provide rather slow decay (a half of day). Diagnosis tools for investigating the ring current, which are expected to bring us a new insight, are proposed in the latter section. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
介质材料电导率是影响卫星充电过程的重要材料参数,它决定着航天器上电荷的分布状态以及电流平 衡建立的快慢。常规的电导率测量方法完全不考虑空间真实带电环境,其测试结果用于卫星带电防护设计将会产生 较大的误差。本文建立了用传统三电极法和电荷衰减法测试介质材料本征电导率的测试系统,对卫星常用的FR4 材 料进行了测试,测试结果与国外的结果相近。  相似文献   

7.
The development of currents due to arbitrary distributions of trapped particles in the geomagnetic field is described. These currents form the Earth's ring current and are responsible for world wide decreases of the surface magnetic field observed during magnetic storms. It is shown that we do not yet know the relative abundances of the ions forming the ring current. Because of this we do not understand how various sources mix to produce the ring current. Several possible generation mechanisms are discussed. Finally, the decay of the ring current is discussed and is shown to be due primarily to charge exchange with important secondary effects attributable to wave-particle interactions.  相似文献   

8.
In planetary atmospheres the nature of the aerosols varies, as does the relative importance of different sources of ion production. The nature of the aerosol and ion production is briefly reviewed here for the atmospheres of Venus, Mars, Jupiter and Titan using the concepts established for the terrestrial atmosphere. Interactions between the ions formed and aerosols present cause (1) charge exchange, which can lead to substantial aerosol charge and (2) ion removal. Consequences of (1) are that (a) charged aerosol are more effectively removed by conducting liquid droplets than uncharged aerosol and (b) particle–particle coagulation rates are modified, influencing particle residence times in the relevant atmosphere. Consequences of (2) are that ions are removed in regions with abundant aerosol, which may preclude charge flow in an atmosphere, such as that associated with an atmospheric electrical circuit. In general, charge should be included in microphysical modeling of the properties of planetary aerosols.  相似文献   

9.
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.  相似文献   

10.
More than 20 years ago, in 1972, anomalous flux increases of helium and heavy ions were discovered during solar quiet times. These flux increases in the energy range<50 MeV/nucleon showed peculiar elemental abundances and energy spectra, e.g. a C/O ratio0.1 around 10 MeV/nucleon, different from the abundances of solar energetic particles and galactic cosmic rays. Since then, this anomalous cosmic ray component (ACR) has been studied extensively and at least six elements have been found (He,N,O,Ne,Ar,C) whose energy spectra show anomalous increases above the quiet time solar and galactic energetic particle spectrum. There have been a number of models proposed to explain the ACR component. The presently most plausible theory for the origin of ACR ions identifies neutral interstellar gas as the source material. After penetration into the inner heliosphere, the neutral particles are ionized by solar UV radiation and by charge exchange reactions with the solar wind protons. After ionization, the now singly charged ions are picked up by the interplanetary magnetic field and are then convected with the solar wind to the outer solar system. There, the ions are accelerated to high energies, possibly at the solar wind termination shock, and then propagate back into the inner heliosphere. A unique prediction of this model is that ACR ions should be singly ionized. Meanwhile, several predictions of this model have been verified, e.g. low energy pick-up ions have been detected and the single charge of ACR ions in the energy range at MeV/nucleon has been observed. However, some important aspects such as, for example, the importance of drift effects for the acceleration and propagation process and the location of the acceleration site are still under debate. In this paper the present status of experimental and theoretical results on the ACR component are reviewed and constraints on the acceleration process derived from the newly available ACR ionic charge measurements will be presented. Possible new constraints provided by correlative measurements at high and low latitudes during the upcoming solar pole passes of the ULYSSES spacecraft in 1994 and 1995 will be discussed.  相似文献   

11.
The Interstellar Boundary Explorer (IBEX) mission is exploring the frontiers of the heliosphere where energetic neutral atoms (ENAs) are formed from charge exchange between interstellar neutral hydrogen atoms and solar wind ions and pickup ions. The geography of this frontier is dominated by an unexpected nearly complete arc of ENA emission, now known as the IBEX ‘Ribbon’. While there is no consensus agreement on the Ribbon formation mechanism, it seems certain this feature is seen for sightlines that are perpendicular to the interstellar magnetic field as it drapes over the heliosphere. At the lowest energies, IBEX also measures the flow of interstellar H, He, and O atoms through the inner heliosphere. The asymmetric oxygen profile suggests that a secondary flow of oxygen is present, such as would be expected if some fraction of oxygen is lost through charge exchange in the heliosheath regions. The detailed spectra characterized by the ENAs provide time-tagged samples of the energy distributions of the underlying ion distributions, and provide a wealth of information about the outer heliosphere regions, and beyond.  相似文献   

12.
电荷交换离子对栅极系统束流影响的数值研究   总被引:2,自引:0,他引:2  
采用二维网格质点法(PIC)计算离子在离子发动机栅极系统中的运动, 通过在模型中添加离子和中性粒子电荷交换的Monte Carlo碰撞模块, 得到了电荷交换离子在栅极周围的分布及电荷交换离子的运动规律.计算结果表明:考虑电荷交换离子后, 屏栅极电流较不考虑电荷交换离子情况时增大了1.42%, 所受影响不大, 加速栅极电流由0增大到主束流电流的1.41%.模拟结果表明:加速栅极下游较远处产生的电荷交换离子, 是造成加速栅极下游面腐蚀及加速栅极电流的主要原因.   相似文献   

13.
离子发动机加速栅极腐蚀深度的DFF测量与数值模拟   总被引:2,自引:2,他引:0  
使用聚焦深度表面测量(DFF)方法对加速栅极下游表面腐蚀深度进行了测量,并将测量结果与数值模拟结果进行了比较,所使用的数值方法为PIC-Monte Carlo方法.利用数值模拟程序对离子发动机栅极腐蚀进行了数值模拟.以氙为推进剂,栅极材料为钼.用蒙特卡罗方法模拟了氙离子与中性氙原子之间的电荷交换碰撞.模拟得到了加速栅极下游表面离子溅射腐蚀的深度分布,腐蚀模式与"Pits and grooves"模式相吻合.   相似文献   

14.
Secondary radioactive isotopes that are used for the determination of cosmic-ray age have relatively short decay lifetimes. The measured abundance of these isotopes at low energies is representative of the cosmic-ray diffusion and the gas distribution in a region of a few hundred parsecs around the Sun. We show how to determine the local cosmic-ray diffusion coefficient in the Galaxy using the data on decaying cosmic-ray nuclei. Calculated surviving fractions of decaying secondary isotopes in diffusion and leaky box models are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
为给电荷衰减时间测试仪器提供溯源,研制了一套电荷衰减试验仪检定装置.该装置主要由双指数形标准衰减电压源、标准脉冲分压器和计算机数据采集处理系统等三个重要部分组成,数据采集处理系统采用虚拟仪器软件Lab Windows/CVI编制,该装置的扩展不确定度为0.66%.  相似文献   

16.
The evolutions of aircraft wake vortices near ground in stable atmospheric boundary layer are studied by Large Eddy Simulation(LES). The sensitivity of vortex evolution to the Monin-Obukhov(M-O) scale is studied for the first time. The results indicate that increasing stability leads to longer lifetimes of upwind vortices, while downwind vortices will decay faster due to a stronger crosswind shear under stable conditions. Based on these results, an empirical model of the vortex lifetime as a function of 10-m-high crosswind and the M-O scale is summarized. This model can provide an estimate of the upper boundary of the vortex lifetime according to the realtime crosswind and atmospheric stability. In addition, the lateral translation of vortices is also inspected. The results show that vortices can travel a furthest distance of 722 m in the currentlystudied parameter range. This result is meaningful to safety analysis of airports that have parallel runways.  相似文献   

17.
It is widely accepted that diffusive shock acceleration is an important process in the heliosphere, in particular in producing the energetic particles associated with interplanetary shocks driven by coronal mass ejections. In its simplest formulation shock acceleration is expected to accelerate ions with higher mass to charge ratios less efficiently than those with lower mass to charge. Thus it is anticipated that the Fe/O ratio in shock-accelerated ion populations will decrease with increasing energy above some energy. We examine the circumstances of five interplanetary shocks that have been reported to have associated populations in which Fe/O increases with increasing energy. In each event, the situation is complex, with particle contributions from other sources in addition to the shock. Furthermore, we show that the Fe/O ratio in shock-accelerated ions can decrease even when the shock is traveling through an Fe-rich ambient ion population. Thus, although shock acceleration of an Fe-rich suprathermal population has been proposed to explain large Fe-rich solar particle events, we find no support for this proposal in these observations.  相似文献   

18.
We review observations from Voyager 2 of CIRs and merged CIRs in the outer heliosphere. The rather simple characteristics of the CIR-associated changes in plasma, magnetic field, and particles become more complex as observations are made at greater and greater distances. Pickup ions from charge exchange undoubtedly play an important role in the structure, but the full details are not yet understood. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
An experimental investigation on the wake vortex formation and evolution of a four vortex system of a generic model in the near field and extended near field as well as the behaviour and decay in the far field region has been conducted by means of hot-wire anemometry in a wind tunnel. The results were obtained during an experimental campaign as part of the EC project “FAR-Wake”. The model used consists of a wing–tail plane configuration with the wing producing positive lift and the tail plane negative lift. The circulation ratio of tail plane to wing is ?0.3 and the span ratio is 0.3. Thus, a four vortex system with counter-rotating neighboured vortices exists. The model set-up was chosen on the condition to create a most promising four vortex system with respect to accelerate wake vortex decay by optimal perturbations enhancing inherent instability mechanisms. The flow field has been investigated for a half plane of the entire wake up to a distance of 48 span dimensions downstream of the model. The results obtained at 1, 12, 24 and 48 span distances are shown as non-dimensional axial vorticity and vertical turbulence intensities. A significant decay in peak vorticity, swirl velocity and circulation is observable during the downward motion of the vortices. Spectral analysis of the unsteady velocity data reveals a peak in the power spectral density distributions indicating the presence of a dominating instability. Using two hot-wire probes cross spectral density distributions have also been evaluated, which highlight the co-operative instability leading to a rapid wake vortex decay within 30 span dimensions downstream.  相似文献   

20.
Möbius  E.  Kistler  L.M.  Popecki  M.A.  Crocker  K.N.  Granoff  M.  Turco  S.  Anderson  A.  Demain  P.  Distelbrink  J.  Dors  I.  Dunphy  P.  Ellis  S.  Gaidos  J.  Googins  J.  Hayes  R.  Humphrey  G.  Kästle  H.  Lavasseur  J.  Lund  E.J.  Miller  R.  Sartori  E.  Shappirio  M.  Taylor  S.  Vachon  P.  Vosbury  M.  Ye  V.  Hovestadt  D.  Klecker  B.  Arbinger  H.  Künneth  E.  Pfeffermann  E.  Seidenschwang  E.  Gliem  F.  Reiche  K.-U.  Stöckner  K.  Wiewesiek  W.  Harasim  A.  Schimpfle  J.  Battell  S.  Cravens  J.  Murphy  G. 《Space Science Reviews》1998,86(1-4):449-495
The Solar Energetic Particle Ionic Charge Analyzer (SEPICA) is the main instrument on the Advanced Composition Explorer (ACE) to determine the ionic charge states of solar and interplanetary energetic particles in the energy range from ≈0.2 MeV nucl−1 to ≈5 MeV charge−1. The charge state of energetic ions contains key information to unravel source temperatures, acceleration, fractionation and transport processes for these particle populations. SEPICA will have the ability to resolve individual charge states and have a substantially larger geometric factor than its predecessor ULEZEQ on ISEE-1 and -3, on which SEPICA is based. To achieve these two requirements at the same time, SEPICA is composed of one high-charge resolution sensor section and two low- charge resolution, but large geometric factor sections. The charge resolution is achieved by the focusing of the incoming ions, through a multi-slit mechanical collimator, deflection in an electrostatic analyzer with a voltage up to 30 kV, and measurement of the impact position in the detector system. To determine the nuclear charge (element) and energy of the incoming ions, the combination of thin-window flow-through proportional counters with isobutane as counter gas and ion-implanted solid state detectors provide for 3 independent ΔE (energy loss) versus E (residual energy) telescopes. The multi-wire proportional counter simultaneously determines the energy loss ΔE and the impact position of the ions. Suppression of background from penetrating cosmic radiation is provided by an anti-coincidence system with a CsI scintillator and Si-photodiodes. The data are compressed and formatted in a data processing unit (S3DPU) that also handles the commanding and various automatted functions of the instrument. The S3DPU is shared with the Solar Wind Ion Charge Spectrometer (SWICS) and the Solar Wind Ion Mass Spectrometer (SWIMS) and thus provides the same services for three of the ACE instruments. It has evolved out of a long family of data processing units for particle spectrometers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号