首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a digital implementation of an Applebaum-Howells type adaptive processor is analyzed for both a limiter and nonlimiter configuration. The performance is evaluated in terms of steady-state residue power, using either a single-pole filter or a perfect integrator to smooth the output of the correlation mixer. The latter filter is the more commonly used for digital implementations. It is shown that when using the perfect integrator filter for both the limiter and linear digital implementations, the steady-state average weight vector equals the optimum weight vector. Thus, for this filter, the steady-state residue power is the minimum possible for either implementation. When using the single-pole filter, neither implementation achieves the minimum possible steady-state residue power. The relative performance of the two implementations depends upon the relative gain settings. When the gains are adjusted to give comparable servo stability for the design maximum jammer power, a reasonable criterion for digital implementations because of analog to digital saturation, the limiter configuration always has smaller steady-state residue power.  相似文献   

2.
给出了一种异步时钟恢复的最佳平方逼近插值滤波器设计,该滤波器基于最小平方逼近理论,采用易于硬件实现的Farrow结构;克服了拉格朗日插值滤波器参数固定而窗函数截短插值滤波器结构复杂的问题。对我国航天测控设备的数字化和小型化具有较好的应用价值。  相似文献   

3.
The LMS adaptive array requires an integrator in each weight feedback control loop. In practice the integrator is often replaced by a low-pass filter, i.e., by a filter with a single pole at s = - ? (where s is complex frequency). The effect of this pole position on array performance is examined. It is shown that to obtain optimal performance from the array, ? must be less than k?2, where k is the loop gain and ?2 is the thermal noise power per element. When at exceeds k?2, the output signal-to-inter ference-plus-noise ratio from the array is degraded for intermediate values of interference power.  相似文献   

4.
A perfect third-order loop filter design that can be implemented as a digital filter is obtained which minimizes the noiseless steady-state acceleration rate (jerk) error for a fixed loop noise bandwidth. Simulations were performed to obtain transient responses of the third-order loop plus a sample fourth-order loop under a jerk input. The results enable one to obtain a loop design that minimizes the loop noise bandwidth required for a given steady-state jerk error and thus obtain better noise jitter performance.  相似文献   

5.
GPS code and carrier multipath mitigation using a multiantennasystem   总被引:1,自引:0,他引:1  
Multipath is a major source of error in high precision Global Positioning System (GPS) static and kinematic differential positioning. Multipath accounts for most of the total error budget in carrier phase measurements in a spacecraft attitude determination system. It is a major concern in reference stations, such as in Local Area Augmentation Systems (LAAS), whereby corrections generated by a reference station, which are based on multipath corrupted measurements, can significantly influence the position accuracy of differential users. Code range, carrier phase, and signal-to-noise (SNR) measurements are all affected by multipath, and the effect is spatially correlated within a small area. In order to estimate and remove code and carrier phase multipath, a system comprising a cluster of five GPS receivers and antennas is used at a reference station location. The spatial correlation of the receiver data, and the known geometry among the antennas, are exploited to estimate multipath for each satellite in each antenna in the system. Generic receiver code and carrier tracking loop discriminator functions are analyzed, and relationships between receiver data, such as code range, carrier phase, and SNR measurements, are formulated and related to various multipath parameters. A Kalman filter is described which uses a combination of the available information from the antennas (receivers) in the multiantenna cluster to estimate various multipath parameters. From the multipath parameters, the code range and carrier phase multipath is estimated and compensated. The technique is first tested on simulated data in a controlled multipath environment. Results are then presented using field data and show a significant reduction in multipath error  相似文献   

6.
This paper presents the results of an investigation of the application of the Global Positioning System (GPS) to real-time integrated missile navigation. We present quantifiable measures of navigation accuracy as a function of GPS user segment parameters. These user segment parameters include antenna phase response accuracy, single versus dual frequency, and Kalman filter structure and size. We also formulate some new phase-locked loop (PLL) filter designs for application in GPS receivers, and demonstrate their superiority over more conventional filters  相似文献   

7.
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s–1.  相似文献   

8.
传统的北斗接收机一般采用标量跟踪环,每个通道的卫星相互独立,在此 基础上,又发展起来了基于矢量跟踪的接收机,使每个通道的卫星跟踪不再相互独立。 提出的基于I、Q 信号观测的接收机跟踪环路,保留矢量跟踪的特点,并且采用EKF 作 为跟踪环路预处理滤波器,代替传统跟踪环路的鉴别器,可以在高动态的环境下对卫星 信号进行跟踪,提高环路的稳定性,从而可以有效地提高BDS/INS 深组合导航滤波器观 测量的估计精度。主要对高动态信号跟踪进行仿真,并与传统的标量跟踪方法和矢量跟 踪方法的跟踪能力进行比较。实验表明, 改进的矢量跟踪环能够在高动态的环境下运 行,比起传统环路有更小的跟踪误差。  相似文献   

9.
A high-precision attitude determination and control of the forthcoming European Gaia satellite is an essential task for the success of the whole mission. The requirements for the spacecraft’s attitude require exceptional efforts in the simulation of the rotations of the satellite under the influence of continuous and randomly arising effects. This paper describes the structure of a physically-motivated noise model for simulating the attitude in a closed loop configuration. It deals with the analysis of the most important disturbing forces and torques acting on the Gaia spacecraft.  相似文献   

10.
A measure of analog correlator performance is considered and interpreted reted as an output signl-to-noise ratio. This quantity is shown to depend on the fourth-order expectation of the input signals and the characteristics of the integrating system. Based on the output signal-to-noise ratio, figures of merit are established for correlators utilizing an ideal low-pass filter, an RC filter, and a finite time integrator. These figures of merit indicate to what degree the correlators reject noise components. For jointly Gaussian inputs, the variation of the output signal-to-noise ratio with the input signal-to-noise ratio is shown to be independent of the integrating system. Finally, a graphical comparison indicates the characteristics of the three systems for several different parameters. This comparison shows that the finite time integrator is superior to the other two systems considered.  相似文献   

11.
双向相干测距测速体制是最常用的航天器测量体制,是一种闭环体制.与之相比较,开环测距测速可以在信号更微弱的情况下获取到观测量,在深空任务中有着独特的意义.然而,开环测距也面临棘手的技术难题——高精度航天器定时技术.针对该难题,在保持现有航天器信号体制的基础上,阐述了基于遥测信号和测距侧音信号(差分单向测距DOR信号可看作侧音信号)间相频约束的航天器定时原理,研究了侧音频率最优化设计方法,给出了“器上发射测站接收”的初步实现方案,为后续开展工程应用奠定了基础.  相似文献   

12.
Optical guidance for autonomous landing of spacecraft   总被引:7,自引:0,他引:7  
An autonomous rendezvous guidance scheme for spacecraft to descend to small celestial bodies by using optical information is presented. First, a new guidance, navigation, and control (GNC) method based on fixation-point (FP) inheritance is proposed. A spacecraft can safely descend toward the target point on the celestial body by tracking and autonomously renewing the FPs on the surface. Next, we deal with the method of extracting the FPs. A spatial band-pass filter (BPF) is applied to pictures taken to enhance features having comparable size with the tracking window. Local variance of the filtered image is used as a criterion of the extraction. Then, the relative information between the spacecraft and the celestial body (position, velocity, attitude, etc.) is calculated from the image coordinates and the range measurements of the FPs from the spacecraft. To suppress observation noise and improve navigation accuracy, an application of the extended Kalman filter is also presented. Finally, simulations are conducted to verify the guidance precision and the fuel consumption of the proposed guidance scheme  相似文献   

13.
This paper presents data describing various performance characteristics of phase-locked loops, which were obtained for the purpose of determining an optimum selection of system order in view of typical operating conditions. With the functions optimized with respect to particular performance characteristics, calculations of the integrated square error and peak error with polynomial inputs are presented in terms of the noise bandwidth; and the generalized error coefficients are also provided in terms of the bandwidth with consideration for the use of both perfect and imperfect integrators. With specific input functions as provided by signals transmitted from earth satellites, an improved performance is demonstrated with the use of the higher order loops, and experimental results verify the calculations and also demonstrate the feasibility of the fourth order loop design.  相似文献   

14.
Common concepts for autonomous on-board navigation systems rely on the numerical integration of a spacecraft trajectory between subsequent measurements of a navigation sensor such as GPS. In combination with a Kalman filter, a predicted state vector becomes available at discrete, but not necessarily equidistant time steps. When used for real-time attitude control or geo-coding of image data, the on-board navigation system has to provide continuous dense output at equidistant time steps, which usually conflicts with the natural stepsize of the relevant integration methods and the non-equidistant measurement times. To cope with this problem, the integrator has to be supplemented by an interpolation scheme of compatible order and accuracy.After presenting a representative formulation of an on-board navigation system and deriving related timing and accuracy requirements, suitable Runge–Kutta methods and associated interpolants are selected and evaluated. Promising results are obtained for the classical RK4 method in combination with Richardson extrapolation and 5th-order Hermite interpolation. The 5th-order Fehlberg method with interpolation due to Enright and, for drag-free scenarios, the 5th-order Runge–Kutta–Nystrom method with 5th-order Hermite interpolation provide a good performance in terms of position interpolation. However, as both methods exhibit significant errors for the velocity interpolation, they are not recommended for use with the outlined navigation filter.  相似文献   

15.
A review and comparison of the weights, sizes, and costs of nuclear and non-nuclear spacecraft power systems is presented and discussed. Nuclear power systems include the range below 10 kW, with an electrical output to weight ratio of 0.5 to 1.0 pounds per watt. Comparisons show that primary batteries are lighter for short-duration missions of a few hours; fuel cells are lighter for durations of one to two months; and solar-cell/secondary battery combinations are to be preferred when sunlight is adequate.  相似文献   

16.
Novel demodulator structures are derived using a theory for the quasi-optimal on-line demodulation of pulse-frequency modulated (PFM) signals in the presence of white Gaussian channel noise. The basic demodulator consists of a phase-locked loop with time-varying gain elements. Furthermore, its integrators are appropriately reset as each new pulse is received. This modulator may be augmented with additional integrators and gain elements to achieve quasi-optimal demodulation with delay. The quasi-optimal demodulation approaches optimal demodulation, in the minimum mean-square-error sense, as the signal-to-noise ratio increases. The various quasi-optimal receivers are derived by application of the extended Kalman filter theory to a state-space signal model.  相似文献   

17.
This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control ...  相似文献   

18.
A two-pole filter is proposed as a detector for a scanning radar. The optimum values of the filter coefficients are found and are approximated by a simple expression. The optimum two-pole filter requires a 0.15-dB increase in signal-to-noise ratio in order to provide the same detection capability as the optimum detector, and yields azimuth estimates whose standard deviation are within 15 percent of the Cramér-Rao lower bound. The estimator is simple to implement, avoiding the storage requirements of the moving window detector and the bias complications of the feedback integrator.  相似文献   

19.
空间对接地面半物理仿真台系统仿真研究   总被引:3,自引:0,他引:3  
 飞行器空间对接地面半物理(HIL)仿真台是进行空间对接技术研究、对接机构地面检测以及对接过程的故障复现等多种用途的关键设备。论文阐述了飞行器空间对接地面半物理仿真台系统建构思想。在此基础上推导出空间对接地面半物理仿真台的空间对接动力学模型。基于物理建模的思想,用SimMechanics工具箱建立了空间对接地面半物理仿真台的机械系统,用Matlab/Simulink建立了控制系统模型,建构了虚拟空间对接地面半物理仿真台。采用滞后补偿等使系统的闭环动态性能达到要求。在空间对接地面半物理仿真台虚拟样机上,采用无阻尼振荡模型对空间对接动力学模型等进行了验证,对空间对接的缓冲过程进行了仿真。仿真结果表明空间对接动力学模型是正确的,空间对接地面半物理仿真台系统的建构思想是可行的。  相似文献   

20.
针对现有罗兰-C接收机普遍采用固定陷波电路抑制窄带干扰的情况,提出了基于全相位谱分析(apFFT)的频域精确自适应陷波罗兰-C窄带干扰抑制方法,设计了基于双相移组合全相位法的FIR频域陷波器。在对窄带干扰进行精确谱分析的基础上,设计相应频点的陷波器对多个窄带干扰进行抑制。基于MATLAB的仿真结果表明:该方法能够根据罗兰-C窄带干扰频率的变化,实现频点任意控制的频域自适应陷波,有效恢复出罗兰-C信号,为增强型罗兰-C接收机的设计提供了一种简单有效的窄带干扰抑制方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号