首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
分数槽集中绕组永磁同步电机被广泛用于伺服控制系统。由于电机极槽配合以及制造过程中机械加工与装配误差等因素,所以永磁同步伺服电机输出转矩中会存在固有的周期性转矩脉动,影响伺服系统实现高精度的速度与位置跟随。因此,采用转矩观测器来估计由上述原因造成的转矩脉动,再将转矩脉动与位置信号通过一定处理,计算出相应的前馈转矩电流,补偿到电流指令端,对转矩脉动进行抑制,从而减小转速脉动。通过仿真和试验验证了抑制方法的有效性。  相似文献   

2.
针对永磁直线同步电机(PMLSM)直接推力控制中存在的超调量大、抗负载扰动能力差、响应速度慢等问题,提出了一种改进的滑模控制速度调节器。该算法中滑模控制趋近律的设计在等速趋近律的基础上引入加权积分型增益的趋近律,能有效避免系统不在滑动模态阶段时切换增益的增大。仿真结果表明:与传统PI速度控制相比,采用改进后的滑模速度控制器应用在PMLSM直接推力控制系统中,系统速度在负载变化时的响应时间缩短、抗扰动能力明显提升,增强了PMLSM推力响应的抗扰动性能。  相似文献   

3.
内置式永磁同步电机的齿槽转矩会带来转矩脉动、电机控制精度变差、振动与噪声等一系列的问题,因此采取有效的削弱齿槽转矩措施至关重要。采用解析计算分析了永磁体径向分段对齿槽转矩的影响,在此基础上提出了一种改进的永磁体分段方法,从而有效地减少永磁体分段后对电机的反电动势和输出平均转矩等性能的影响。此外,基于改进的永磁体非均匀分段方法,还提出了一种永磁体不等厚非均匀分段来削弱齿槽转矩的新方法,并采用有限元法对永磁体均匀分段、非均匀分段和不等厚非均匀分段3种方法进行仿真验证和对比分析。仿真结果表明,采用永磁体不等厚非均匀分段方法的齿槽转矩削弱效果最佳。  相似文献   

4.
设计了一种基于滑模变结构的永磁直线同步电机(PMLSM)矢量控制系统。从直线电机的基本工作原理出发,通过坐标变换,建立PMLSM在两相同步旋转正交坐标系上的数学模型。基于滑模变结构和李雅普诺夫稳定性理论设计转速调节器,组成PMLSM滑模控制系统。为了验证该控制系统的有效性,在MATLAB/Simulink平台下搭建系统的模型并进行仿真。仿真表明,该控制系统具有很强的鲁棒性。  相似文献   

5.
向凡  许鸣珠 《航空动力学报》2019,46(8):18-23, 58
永磁直线同步电机(PMLSM)直接推力控制系统中的传统机械传感器在恶劣工况下难以准确获取控制系统反馈信息。将模型参考自适应算法应用到PMLSM,设计了基于模型参考自适应系统(MRAS)的无速度传感器直接推力控制系统,依据辨识得到的磁链位置重新构建了一种磁链观测器,对磁链进行补偿,减小了直接推力控制推力响应的波动。通过仿真,证明了基于MRAS和磁链补偿的无速度传感器PMLSM直接推力控制系统能够准确地辨识初级的速度和位置信息,得到了较好的动静态性能。  相似文献   

6.
永磁直线同步电机矢量控制的速度环常采用PI控制。传统PI控制器在速度追踪时存在起动过程超调大、受到负载扰动时调节时间长等不足之处。为提高伺服性能,滑模控制被应用到伺服系统中,但其缺点是存在抖振问题。因此,提出一种基于内分泌激素调节的滑模控制方法,可以有效降低速度的超调量,缩短受到外部扰动时的调节时间。在MATLAB中搭建了系统的仿真模型,仿真结果表明其对速度和推力的控制效果显著,优于传统的PI控制和常规的滑模控制。  相似文献   

7.
模型预测控制(MPC)技术近年来在高动态性能电机驱动系统中应用广泛。为了克服传统MPC技术中有限控制集(FCS)造成的稳态电流脉动问题,提出了一种基于混合控制集(MCS)预测控制的永磁同步电机(PMSM)电流脉动抑制方法。分析建立PMSM预测控制系统离散数学模型,并分析电压矢量精度与电流脉动之间的关联性;在此基础上,MCSMPC将电压源型逆变器有限的有效电压矢量数,扩展为多个以占空比形式存在的虚拟电压矢量,并基于上述虚拟电压矢量完成MPC优化问题在线求解;此外,考虑到MCSMPC系统的参数敏感性问题,对MCSMPC系统反馈噪声问题进行分析讨论。最后,搭建双15 kW PMSM对拖样机测试平台进行试验分析,分析内容包括MCS方法动态跟踪特性、电流脉动稳态效果。试验结果表明所提出的MCSMPC方法在保留了传统预测控制技术高动态响应的基础上,可有效降低PMSM稳态电流脉动幅度和运行噪声。  相似文献   

8.
针对永磁直线同步电机(PMLSM)伺服系统强鲁棒性、高控制精度的要求,提出一种鲁棒反步控制器。为了解决常规PID跟踪精度不高、参数调节难度大及鲁棒性差的问题,将自适应控制与反步控制结合。利用自适应机制实时估计系统的扰动,去除了反步控制设计过程中对外界扰动上界的要求,同时克服了控制律高频抖振的问题。同时,分析了闭环反馈系统中高频噪声的特性以及对系统的不利影响,使用低通滤波器来抑制高频噪声。最后,在Googol公司的试验平台上,通过与一种改进的PID对比,验证了设计的鲁棒反步控制器的可行性以及抑制高频噪声的有效性,可为先进控制理论的工程化提供参考。  相似文献   

9.
以1台5 kW背绕式高速永磁同步电机为研究对象,建立其电磁场解析模型。将电磁场求解域划分为气隙子域、永磁体子域、槽口子域和槽子域,求解相应的拉普拉斯方程或泊松方程,解析模型计及电枢反应场、永磁场和定子开槽的影响。计算了该电机的气隙磁密、绕组磁链、绕组反电动势、齿槽转矩和电磁转矩,并将结果与二维有限元法计算结果和试验数据比较,比较结果说明了解析模型的准确性。最后以槽口开度为变量,研究其对气隙磁密分布和齿槽转矩的影响。  相似文献   

10.
针对表贴式永磁直线同步电机矢量控制系统参数设置需反复测量和调试的问题,提出一种自动整定的方法。测量电流控制器输出波形并计算相应的沃尔什一阶系数,反复迭代反电动势常数和定子电感,直至沃尔什一阶系数收敛到零,自动辨识表贴式永磁直线同步电机的电气参数;随后让电机自由运行辨识出机械参数;最后计算出速度和电流控制器的PI参数。样机测试结果验证了提出方法的有效性。  相似文献   

11.
建立了永磁同步直线电机的电磁场有限元物理模型,以此对气隙磁密波形畸变率进行了深入的分析。通过电机参数样本空间设计,利用正交试验设计方法进行非线性回归建模分析,给出了气隙磁密波形正弦度可行的电磁方案。基于混沌搜索理论和适应函数对永磁同步直线电机结构参数进行优化。仿真结果表明,在此结构参数基础上,电机磁极偏移后其三相反电势依然有较好的对称性,为永磁同步直线电机及其他的电磁工程设计提供了一种新的思路。  相似文献   

12.
提出了一种基于ANSYS Maxwell 2D的永磁同步电机(PMSM)场路结合电磁设计方法。通过ANSYS Maxwell 2D软件分析计算得出PMSM 2D理想电机模型的空载励磁电动势、负载时的励磁电动势、直轴同步电抗和交轴同步电抗参数,并以此修正基于电路和磁路的电磁设计程序中用来计算空载励磁电动势、负载时的励磁电动势、直轴同步电抗和交轴同步电抗参数的校正系数,从而使得PMSM的设计结果更加准确。通过该方法设计了PMSM并进行了试验。试验结果验证了该设计方法的正确性。  相似文献   

13.
针对PID或其改进的算法鲁棒性偏低问题,提出了永磁同步电机(PMSM)的自适应云模型控制算法研究。在分析了自适应云模型结构后设计了PMSM自适应云模型控制器。搭建了基于自适应云模型控制算法的PMSM试验平台,试验结果表明提出的PMSM的自适应云模型控制算法精度高、性能稳定。  相似文献   

14.
对转永磁同步电机(Antirotary PMSM)在采用矢量控制时,可等效为2个相同的电机串联,在同一个空间坐标系中控制。当负载突变时,两侧转子转速发生变化,由于PI调节速度较慢,两侧转子易发生失步现象,系统将不可控。为解决(Antirotary PMSM)的失步问题,选取对转电机在旋转坐标系下的d轴电流增量和q轴电流增量为状态变量,研究了适用于对转电机的模型预测控制,提出了对转电机的模型预测电流控制算法。该控制方法动态响应快,而且可以有效避免超调,具有良好的控制性能。仿真结果表明,模型预测控制比传统的PI调节器动态响应快,可以有效解决对转电机的失步问题。  相似文献   

15.
针对外界干扰导致永磁同步电机(PMSM)固有参数发生变化的问题,将新型的智能控制理论引入到PMSM控制系统中,提出了一种新颖的带有积分环节的反步自适应法的控制方法。该控制器能够利用交轴电流动态抑制或消除参数的变化对系统的影响,基于Lyapunov稳定性原理设计被控系统的控制律和自适应律,并引入积分环节,增强被控系统的稳定性,缩短速度响应的时间。仿真试验证明,该控制器能够有效地抑制电机固有参数的变化对被控系统的影响,保证了系统的强鲁棒性和动静态性能。  相似文献   

16.
从永磁同步电机(PMSM)的矢量控制出发,提出了一种PMSM弱磁优化控制方法。内置式永磁同步电机(IPMSM)相对表贴式永磁同步电机弱磁能力强,调速范围宽,以IPMSM为对象,对弱磁调速进行了仿真与优化。PMSM在基速以下采用最大转矩电流比的恒转矩控制,减小了电机损耗,提高了逆变器的效率,在基速以上采用恒功率调速。直轴电流去磁调速结合交轴电流去磁调速的弱磁控制方式,提高了PMSM的功率因数,扩展了调速范围。针对弱磁环节转速的波动问题,在传统PI控制上做出改进,提出了模糊自整定PI的控制方式,提高了PMSM弱磁调速的性能。在MATLAB/Simulink中搭建仿真模型,验证了该控制方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号