首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
传统双馈风力发电机(DFIG)控制存在抖振现象,容易造成系统的不稳定。为了减轻控制抖振现象,提高控制的稳定性,在分析了DFIG动态特性的基础上,建立了DFIG的数学模型,设计了超螺旋二阶滑模控制器,并研究了突变风的情况下滑模控制器的控制性能。通过MATLAB/Simulink工具进行了仿真验证。仿真结果证明:滑模控制器具有良好的最优转矩跟踪能力和无功调节能力,与一般的控制方法相比鲁棒性较强,转子控制电压连续,控制产生的抖振可以大幅减轻,系统的稳定性大大提升。  相似文献   

2.
管萍  李军 《航空动力学报》2018,45(9):97-102
为了改善双馈风力发电系统的控制性能,将分数阶滑模控制应用于双馈风力发电机的直接功率控制系统中。将分数阶微积分引入到滑模控制中,构成分数阶滑模控制器,利用分数阶的遗传衰减特性削弱滑模控制的抖振。推导了应用于双馈风力发电系统的分数阶滑模控制律,并用李雅普诺夫稳定性定理证明了系统的稳定性。所提出的分数阶滑模控制系统省略了电流环控制,简化了控制结构,实现了有功功率和无功功率的有效控制。仿真与试验结果显示出所用分数阶滑模控制策略的有效性,同时表明该系统削弱了传统滑模控制中存在的抖振。  相似文献   

3.
对双馈感应发电机(DFIG)的两种直接功率控制(DPC)策略进行比较研究。根据DFIG的数学模型,导出对DFIG进行DPC的统一控制模型;首先设计基于滞环比较器的直接功率控制(HCDPC)策略,采用开关型滞环控制器,直接实现定子有功功率和无功功率的解耦控制;其次将SVM技术应用于DPC,提出SVMDPC策略,根据DFIG定子有功、无功功率偏差,采用PI调节器,直接实现定子有功、无功功率的解耦控制;最后对两种DPC策略进行试验研究,验证了两种DPC策略的正确性和可行性,并对其控制性能进行了对比评估。  相似文献   

4.
王艾萌  张佳  郗文远 《航空动力学报》2017,44(9):110-117, 124
针对不对称电网故障下,双馈风力发电机的控制策略进行了研究。讨论了电网故障时转子侧变流器(RSC)和网侧变流器(GSC)的控制目标,合理安排了电网严重故障时的控制优先级。基于比例-积分-谐振滑模控制原理设计了机侧和网侧变流器协同控制方案。通过MATLAB/Simulink仿真软件搭建了所设计控制方案的仿真模型。仿真结果表明,在电网正常运行的情况下,与传统的矢量控制策略相比,比例-积分-谐振滑模控制策略对输出功率、电流变化的响应更迅速,具有更好的动态性能和抗扰动能力;在电网不对称故障下,能够有效地抑制电磁转矩振荡和直流母线电压波动,提高了双馈式风力发电机的低电压穿越能力。  相似文献   

5.
在实际生产中,双馈风力发电机(DFIG)转子绕组状态监测能有效提高风电机组的运行可靠性。为研究DFIG转子绕组运行故障试验方案,首先介绍试验平台的基本原理、现场试验装置及搭建过程中主要问题的解决方法;然后以变换器网侧电流作为研究对象,分析故障特征信息流经变流器电力电子器件的传播规律,基于电流频谱提取转子绕组发生不平衡故障的诊断依据;最后基于获取的转子绕组三相不对称负载故障运行前后的转子绕组电流频谱图,可分析转子侧电气量故障特征频率。依据试验结果将转子变换器网侧电流频谱中的100 Hz、200 Hz和几个特征频率边频分量作为转子绕组不平衡故障的诊断依据;将3sf和(2±3s)f(s为转差率,f为基频)作为转子三相负载不对称故障的特征频率,具有一定的试验指导性和工程意义。  相似文献   

6.
胡云安  焦会  陈晔 《飞行力学》2005,23(4):67-70
基于双滑模变结构控制理论,对切换面的选取和控制量的切换规律做了进一步的分析,提出两个切换面可以分开单独设计,通过状态反馈保证在滑模区上的稳定性;在具有非匹配不确定性的情况下,证明了控制量的设计能够满足滑模控制的可达条件;提出了更简单的控制律设计方法,保证状态轨迹分别在两条滑模区上来回切换,降低了控制量振动频率.用动态平衡的方法,通过控制导弹的平衡迎角达到了控制加速度的目的.针对某型导弹纵向回路线性模型和非线性时变模型进行了仿真研究,结果证明了设计的可行性和有效性.  相似文献   

7.
研究双馈型风力发电系统变流器控制参数对振荡模态的影响。在MATLAB/Simulink中建立系统详细的小信号模型,利用特征值分析和相关因子分析,对机网相互作用振荡模态进行辨识和分类。通过改变变流器控制参数,研究振荡模态的变化特性。最后,在MATLAB/Simulink上进行仿真验证。研究表明,优化变流器控制参数,可有效抑制振荡。  相似文献   

8.
王凯东  张超 《航空动力学报》2019,46(6):33-37, 54
针对传统直接转矩控制(DTC)方法低速控制精度差、转矩脉动大、开关频率不稳定等问题,提出了一种基于二阶滑模控制的永磁电机DTC方法。该控制方法基于二阶滑模控制原理,将传统磁链控制器与转矩控制器以滑模控制器替代,对空间电压进行矢量调制,提高了开关频率的稳定性,获得了良好的动态稳定性,改善了电机输出性能。仿真与试验结果表明,该控制方法能够有效减小电流脉动与转矩脉动,同时提高了控制系统的抗干扰能力,实现了电机的快速动态响应,具有较强的鲁棒性能。  相似文献   

9.
随着风电规模的日趋庞大和低电压穿越技术的日趋成熟,人们迫切需要知道电机内部在低电压穿越工况下的电磁场变化,为电机的故障诊断提供依据。求出了双馈风力发电机在电网电压跌落至不同程度时的电机内部的电磁场,并在此基础上分析了电机内部电磁场的不同和变化趋势,为分析风机的早期故障诊断及其演化趋势做基础工作。  相似文献   

10.
为了研究电机定子匝间短路故障时电磁特性的表征,基于Ansys Maxwell建立双馈发电机有限元模型,实现空载、并网和不同程度定子绕组匝间短路故障3种工况的模拟仿真。根据表征量理论计算方程式,基于能量角度定量分析3种工况下的气隙磁密畸变的振动、电流和温度特性。通过对比各表征量优缺点及诊断可行性分析,最终确定电流作为反映定子绕组匝间短路故障时气隙磁场的表征因子,而振动和温度作为故障检测的补充和验证,为发电机故障诊断的信号特征选择提供了理论基础。  相似文献   

11.
大规模风电经固定串补线路送出时,由于变流器与固定串补之间的相互作用,使双馈风电机组(DFIG)可能会存在一种新的次同步谐振(SSR)问题,称为次同步控制相互作用(SSCI)。提出反馈线性化控制策略,并将之应用于DFIG转子侧变流器和网侧变流器控制回路以抑制SSCI。首先对系统的反馈线性化条件进行验证,再选取合适的坐标变换,在保证系统零动态稳定的前提下求得非线性状态反馈规律。在MATLAB/Simulink下的仿真结果表明:与参数已整定的比例积分控制策略相比,反馈线性化控制策略能够有效抑制SSCI,使DFIG在不同串补度和风速下都能保持稳定运行,且不影响DFIG的故障穿越能力。  相似文献   

12.
为了使双馈异步风机(DFIG)能够更好地参与微电网频率调节并减少有功控制成本,综合考虑风机向微电网输送有功功率和提供备用容量参与系统调频两方面因素,提出了变减载率超速控制法。计及风速出现概率,采用概率加权求和法,考虑减载成本、调频效益和调频恢复成本求解超速控制成本(COC),得到变减载率曲线。通过对一个含DFIG的微电网系统进行仿真分析,验证所提方法可有效改善微电网频率动态特性,减少风机有功控制成本,有利于微电网的稳定运行。  相似文献   

13.
双馈异步风力发电机(DFIG)机械故障在实际运行中尤其不可忽略,不论是转子刚度不足还是轴承磨损或安装误差,都会导致气隙偏心,严重时甚至会烧毁电机,因此对风机进行准确高效的气隙偏心故障诊断至关重要。简单介绍DFIG产生气隙偏心的故障机理,再对当前已有的相关故障诊断方法做重点归类阐述,最后展望未来的DFIG气隙偏心故障诊断方法的发展趋势和方向。  相似文献   

14.
针对执行机构饱和非线性未知的碟形飞行器,在考虑执行机构动态的基础上,设计了基于神经网络的滑模控制器,给出了相应的控制律和参数选择方法.神经网络用来估计执行机构的饱和量,从而在设计控制器时,可以对执行机构的饱和进行相应补偿.仿真结果表明了该方法的正确性和有效性  相似文献   

15.
双馈风力发电机(DFIG)系统控制复杂,离线仿真与传统全实物的故障试验存在一定局限性。在控制功能强大的MATLAB/Simulink环境下构建基于dSPACE1007系统的双馈风力发电系统半实物实时仿真平台,解决可模拟绕组内部故障的实物电机、dSPACE与Simulink软件三方联调时的数据接口与控制问题。试验结果表明,该平台在DFIG定、转子匝间短路故障工况下,通过Control Desk界面可灵活改变控制参数及算法,实现电机绕组内部故障状态下的容错运行,为DFIG故障检测和容错控制研究提供硬件平台。  相似文献   

16.
双馈异步发电机(DFIG)在大规模风电并网环境下提供的无功功率无法满足并网需求。虽然引入固定电容器能够提供无功补偿,但系统受功率耦合的影响无法有效实时维持电压稳定。提出了一种静止无功发生器(SVG)与DFIG协调补偿无功的控制策略,同时引入电力系统稳定器(PSS)抑制系统的低频振荡,充分利用DFIG风电机组自身发出无功的能力,减少了SVG的配置容量。在MATLAB/Simulink软件仿真平台建立DFIG风电机组并网模型,仿真结果证实了此控制策略能够完成连续无功补偿,有效维持并网点电压稳定,增强系统输电能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号