首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
介绍了下一代地铁车辆用TQ250永磁同步牵引电机的研制情况。主要从总体技术要求、设计难点、关键技术、样机试验等方面进行了论述。根据下一代地铁车辆永磁同步牵引电机的技术特点及主要技术参数指标要求,通过对等效定额设计、电磁设计、轻量化设计及冷却结构设计等关键技术攻关,研制了1台永磁同步牵引电机,并进行了试验。样机试验结果分析表明,该电机满足下一代地铁车辆指标要求,验证了所设计的可行性。  相似文献   

2.
提出一种大转矩外转子永磁轮毂电机,可用于纯电动机场摆渡车、机场大巴车、公交大巴车等。合理设计电机外转子的永磁磁极倾斜角,使电机相反电动势为只含有3次谐波的梯形波,线反电动势为正弦波,同时不降低电机的输出转矩。分析比较了采用不同矫顽力的磁钢对相反电动势的影响,兼顾转矩输出能力和电机调速范围后,选择了拥有合理矫顽力的永久磁钢。同时,搭建了基于SimplorerMaxwell软件的场路联合仿真平台,比较、分析了基于正弦波磁场定向控制策略和基于方波控制策略的电机驱动特性。虽然两种方法都能实现转矩控制,但磁场定向控制策略的转矩波动更小。  相似文献   

3.
由于感应电机驱动系统采用数字控制器和脉宽调制输出会伴随着数字延迟的问题,加之参数可能存在的扰动,使得传统的间接磁场定向控制方法在感应电机高速弱磁区的控制性能降低。针对此问题,提出了一种基于专家控制器和模糊推理机制的感应电机弱磁区优化控制策略。考虑到传统间接磁场定向控制中电流调节器在弱磁区若没有获得适合的电流参考指令,则可能会产生高频振荡乃至失稳。因此,在传统方法的基础上将转速闭环输出的电流参考先送入到专家控制器,专家控制器基于数据库和模糊推理,对电流参考进行修正,其中模糊推理机制基于简单的高斯函数逻辑实现。最后,构建了感应电机驱动试验平台,开展了电机在弱磁区的高速驱动试验,试验结果验证了新型控制策略的有效性。  相似文献   

4.
将牵引电机应用于双流制窄轨电力机车时,由于窄轨机车轨距小,所以牵引电机安装空间异常狭小,比一般牵引电机在安装空间、电机结构、电磁负荷等方面的要求更加苛刻。针对窄轨双流制电力机车的运用特点和特殊要求进行了分析,提出了牵引电机的设计要求和关键技术难点,并对关键技术难点给出了相应的分析和解决措施。对该牵引电机的制造过程及电机试验测试情况进行了论述。试验结果表明,该牵引电机达到了设计预期,完全能满足设计要求。  相似文献   

5.
提出了一种新型二维解析分析方法用于计算轴向磁通磁场调制型电机的气隙磁场分布和电机特性。对电机每个子域列出拉普拉斯方程或泊松方程并结合边界条件,求解出每个子域的矢量磁位,进而得到气隙磁场分布、空载反电势、电磁转矩和轴向磁拉力的解析表达式。为了评估解析方法的计算精度,对二维解析分析结果和三维有限元仿真结果进行了比较,结果表明二维解析计算结果的计算误差在10.3%以内。由于解析分析在保证计算精度的前提下大大缩短了计算时间,因此该方法适用于轴向磁通磁场调制型电机初始设计阶段电机参数的确定。  相似文献   

6.
分析了无轴承永磁同步电机(BPMSM)的悬浮原理,在转子中加入了一组阻尼线圈,建立了带有阻尼线圈BPMSM径向悬浮力的精确数学模型。通过对加入阻尼线圈前后的数学模型进行计算、对比、分析,证明了阻尼线圈对转子稳定性的增强。采用转子磁场定向控制策略设计并构建了BPMSM的控制系统,对转子的位移等参数进行仿真。结果表明加入阻尼线圈后,有效提高了电机的稳定悬浮性能及系统的鲁棒性。  相似文献   

7.
传统的铁心式直线电机由于铁心开断的影响,造成了横向和纵向边端效应,使推力输出波动较大;无铁心永磁直线电机具有零齿槽效应的优点,结构简单,控制灵活。采用两种解析法求解无铁心永磁同步直线电机气隙磁场的问题,即等效磁势法和等效磁化电流法,同时采用有限元法对电机磁场进行有限元分析,验证解析法磁场解析计算的准确性。最后分析电机主要尺寸对气隙磁场的影响。通过改变电机参数,进行了优化设计,为同类电机的设计与分析提供了参考。  相似文献   

8.
轴向磁场磁通切换型永磁(AFFSPM)电机是一种轴向长度短、转矩密度高的新型永磁电机。该电机磁场呈三维分布,与径向磁场电机不同,需要对该电机进行三维有限元分析,从而增加了电机分析和优化时的计算时间和成本。基于等效磁路法分析了AFFSPM电机的静态特性,建立了AFFSPM电机的非线性等效磁路模型,采用该模型计算、分析了气隙磁密、空载永磁磁链、反电动势和电感等特性,并与采用三维有限元方法的计算结果进行比较,验证了AFFSPM电机等效磁路模型的准确性,表明等效磁路模型适用于AFFSPM电机初始设计和分析。  相似文献   

9.
针对感应电动机在矢量控制过程中存在的转子磁链定向不准确的问题,解释了磁链观测误差的原因,重点研究了电机参数的在线辨识方法。提出了基于模型参考自适应系统的感应电动机磁链观测与参数在线辨识方法。基于波波夫超稳定性定理,设计了转子时间常数与励磁互感的双参数自适应律。该方法以电压模型磁链观测器作为参考模型,在线辨识出电流模型磁链观测器所需的参数,使磁链观测结果具有收敛性和鲁棒性,从而避免了电机参数测量不准确与容易变化对磁链定向造成的不良影响。仿真结果表明该方法具有实时性与可行性。  相似文献   

10.
为了实现电推进飞机电机的高功率密度和高效率,提出了一种无槽轴向磁场永磁电机,该电机在继承定子无铁心轴向磁场永磁电机高效率优势的同时,能够实现更高的功率输出能力。首先,阐述了3种轴向磁场永磁电机的拓扑结构,包括定子无铁心轴向磁场永磁电机、无槽轴向磁场永磁电机及无轭分块电枢轴向磁场永磁电机。在此基础上,分别对3种电机的绕组因数、转矩输出能力和损耗分布进行了深入分析,对其损耗产生机理和影响因素进行了研究。针对飞机推进电机应用场合,对3种电机的电磁特性进行了对比。结果表明,提出的无槽轴向磁场永磁电机具有高功率密度和高效率的优势,适合应用于电推进飞机。最后,研制了一台50 kW定子无铁心轴向磁场永磁电机原理样机,试验结果验证了理论和仿真分析方法的正确性。  相似文献   

11.
柳振  郭庆  徐翠锋 《航空动力学报》2018,45(7):102-108, 115
通过研究电动汽车中无刷直流电机(BLDCM)负载运行时电机的性能与负载之间的密切关系,针对BLDCM调速应用,提出了一种改进广义预测控制的算法。通过对仿真模型中的BLDCM的数学模型分析,建立BLDCM的控制系统并进行仿真研究。仿真结果表明:当采用改进广义预测算法,与以往的PID控制算法相比,BLDCM的负载稳态精度以及最大转速波动都得到明显的改善,具有响应快、控制精度高,电机负载抗干扰能力强等特点,BLDCM可满足电动汽车行驶中BLDCM运行的要求。  相似文献   

12.
电动汽车驱动电机极力追求高密度轻量小型化,不断推进电机的冷却散热与热传导技术的进步与发展。为此,开展车用驱动电机的电-磁-热一体化设计方法研究,通过构建一种工程化定子热路模型提出了定子绕组热性能直接设计法及其关键热参数,并直接融入电磁设计中,强化热性能设计的同时也弥补了传统电磁设计热负荷AJ值评估热性能的缺陷。通过快速评估电机的热传导能力和绕组温升,可评估比较不同设计方案的热性能,得到电-磁-热一体化设计的最佳解决方案,从而提升电机持续运行的输出转矩。采用定子绕组热性能直接设计法,改进设计了一台液冷机壳车用永磁同步驱动电机样机,显著降低了定子绕组温升。样机温升试验验证了定子绕组热性能直接设计法及其关键热参数评估热性能的有效性。  相似文献   

13.
纯电动车控制系统对电机控制性能要求较高。提供了一种基于模糊神经网络的永磁同步电机矢量控制方案。以模糊神经网络控制器作为电流调节器,并在速度环引入模糊控制器,将其输出作为电流环的限幅,达到限速的目的。仿真和试验结果表明:对于电动车运行的复杂情况,该方法具有良好的转矩跟踪和电机限速性能。  相似文献   

14.
An ultracapacitor system for an electric vehicle has been implemented. The device allows higher accelerations and decelerations of the vehicle with minimal loss of energy and minimal degradation of the main battery pack. The system uses a DC-DC power converter, which is connected between the ultracapacitor and the main battery pack. The design has been optimized in weight and size, by using water-cooled heat sinks for the power converter, and an aluminum coil with air core for the smoothing inductance. The ratings of the ultracapacitor are: nominal voltage: 300 Vdc; nominal current: 200 Adc; capacitance: 20 Farads. The amount of energy stored allows us to have 40 kW of power during 20 seconds, which is enough to accelerate the vehicle without the help of the traction batteries. The vehicle uses a brushless DC motor with a nominal power of 32 kW and a peak power of 53 kW. A control system based on a Digital Signal Processor (DSP) manipulates all the aforementioned variables and controls the Pulse Width Modulation (PWM) switching pattern of the converter transistors. The car used for the implementation of this system is a Chevrolet LUV truck.  相似文献   

15.
针对永磁同步电机(PMSM)模型预测直接转矩控制(DTC)转矩脉动大、功率元件开关频率不恒定等问题,将两电平逆变器的8个电压空间矢量作为有限控制集,应用到PMSM DTC中。设计考虑转矩误差、最大转矩电流比及电流约束的成本函数,利用成本函数来估算有限集合中各电压矢量的占空比,从而求得逆变器的最优电压矢量作为系统控制量。与传统模型预测控制方法相比,该方法的电流谐波和转矩脉动显著降低,且转矩动态性能也得到改善。仿真试验结果验证了所提出的控制方案有效性。  相似文献   

16.
李明辉 《航空动力学报》2017,44(7):71-75, 97
永磁同步曳引机是典型的非线性多变量强耦合系统,在同步旋转坐标系下dq轴电流存在耦合,传统的PI控制器无法实现解耦,提出一种基于内模控制原理和空间矢量算法相结合的高性能永磁同步曳引机解耦控制方法,用内模控制策略控制理想电机模型,对定子电流交叉耦合电势动态解耦,提高系统的动态响应性能,同时在整个电流闭环过程中对参数摄动和外扰动具有良好的鲁棒性,这种方法不需要额外的电机参数和检测硬件,试验结果验证了这种方法有效可行。  相似文献   

17.
为了解决电动汽车无刷直流轮毂电机控制中普遍存在的调速不精确、转速响应慢和自适应性较差等问题,通过分析轮毂电机调速系统特性,研究其对电动汽车整车性能的影响。依据无刷直流电机(BLDCM)简化数学模型,从速度调节角度分析讨论了控制策略,并以电机转速响应迅速且稳定为控制目标,搭建了基于dSPACE的BLDCM快速控制原型试验平台,深入讨论了转速模糊PI控制策略对整车性能的影响。试验结果表明,模糊PI闭环控制策略能有效改善电机的调速性能,提高无刷直流轮毂电机电动汽车行驶的稳定性。  相似文献   

18.
应用基于两电平变频器的传统感应电机驱动系统存在输出转矩脉动较大的问题。针对这个问题,设计了一种模块化多电平变频器驱动的多极感应电机转矩脉动最小化控制方案。基于多极感应电机设计了其多电平驱动变频器拓扑,并采用了一种单极性的载波移相空间矢量脉宽调制技术进行控制。通过脉冲序列生成分析和计算,系统的低次输出谐波都达到了开关频率的四倍频以上,进而有效降低了转矩脉动。基于模块化多电平变频器的多级感应电机驱动试验平台进行了对比试验研究,试验结果验证了在新型控制策略下的有效性,电机转矩脉动得到了明显改善。  相似文献   

19.
孔垂毅  代颖  罗建 《航空动力学报》2019,46(2):101-108, 113
轮毂电机具有结构紧凑、传动效率高、控制和转向灵活等优点。由轮毂电机驱动的电动汽车是新能源汽车重要的发展方向。通过各种电机的对比,认为永磁同步电机效率高、功率密度高、可靠性好,是轮毂驱动电机一个较好的选择。总结了电动汽车轮毂电机国内外的应用概况,介绍了轮毂电机电磁设计优化、控制策略及散热方式和结构方面进行的研究和工作,最后探讨了我国电动汽车轮毂电机研究中存在的问题,展望了轮毂电机未来的发展方向。  相似文献   

20.
随着海上风电场的发展和高压直流输电技术的应用,风电场系统存在交流侧故障穿越的问题。针对这个问题,提出了一种用于故障穿越的基于模块化多电平变频器和双三相异步电机的飞轮储能系统,并设计了其驱动控制方案。飞轮储能系统采用了模块化多电平技术能方便地构建大功率高压变频器,并具备扩容能力。为了提高飞轮储能系统的可靠性,采用了双三相异步电机驱动,从而提高了冗余性。接着设计了能均衡各个模块电容电压的双三相异步电机驱动控制算法。最后,基于MATLAB/Simulink仿真平台建立了风电场和飞轮储能系统的仿真模型,进行了仿真计算。仿真结果验证了飞轮储能系统的功能和驱动控制策略的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号