首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
针对大飞机全尺寸三框两段货舱地板下部结构,分别进行3.95 m/s和5.53 m/s的落重冲击试验,对比分析其变形模式和冲击响应特性。建立货舱地板下部结构有限元模型,通过仿真结果与试验结果的相关性分析来验证有限元模型,并进一步分析不同冲击速度对货舱地板下部结构变形模式和冲击响应特性的影响。结果表明:在3.95 m/s冲击下,中间支撑件与机身框连接区域铆钉未发生失效,在5.53 m/s冲击下,中间支撑件与机身框连接区域铆钉发生失效,且最终压缩位移量增大221.0%,最大加速度峰值降低19.9%,最大冲击力峰值降低2.9%。有限元模型能够很好地复现冲击试验过程,准确模拟机身框、中间支撑件及C型支撑件等变形情况,捕捉到中间支撑件与机身框连接区域的铆钉失效情况,在3.95 m/s和5.53 m/s冲击下,仿真与试验获得的最大加速度峰值偏差分别为4%和11.4%。中间支撑件与机身框连接铆钉在4.0~4.5 m/s的速度区间内发生失效,导致货舱地板下部结构整体压缩量迅速增大,中间支撑件吸能占比下降,机身框吸能占比上升。撞击区域铆钉失效对货舱地板下部结构变形模式、冲击响应和吸能特性有显著影响,研究成...  相似文献   

2.
为了研究大型运输类飞机坠撞特性及失效模式,发展机身框段结构有限元建模及坠撞仿真技术,首先设计加工三框两段全尺寸机身框段试验件(含2套三联座椅和4个FAA混Ⅲ假人);其次通过开展坠撞试验获得其坠撞变形及响应特性;最后建立经试验验证的机身框段有限元模型,并进一步评估其撞击不同地面(混凝土地面和软土地面)时的响应特性。结果表明,在6.02 m/s坠撞速度下,客舱地板上部区域基本保持完整,客舱地板下部区域发生了较大变形与破坏,产生3处塑性铰;货舱地板横梁一侧在其与机身框连接处发生断裂,导致同侧的客舱地板峰值加速度明显大于另一侧,最大峰值加速度和撞击力分别为427.7 m/s2和290.8 kN。有限元模型能够准确模拟客舱地板下部的3处塑性铰、货舱地板横梁与机身框连接处的失效情况等,且在速度、加速度等方面与试验结果吻合较好,仿真结果表明机身框是主要的吸能部件,占总吸能量的40.7%;当机身框段撞击不同地面时,由于软土地面发生变形并吸收了部分冲击能量,导致机身变形模式发生改变,并降低了传递给乘员的峰值加速度。  相似文献   

3.
冯振宇  解江  李恒晖  程坤  马骢瑶  牟浩蕾 《航空学报》2019,40(2):522394-522394
为了研究大飞机坠撞特性及数值分析方法,选取大飞机货舱地板下部结构为研究对象,建立其有限元模型,实现显式动力学的求解与分析。考察倒置、固支的货舱地板下部结构在200 kg落重以7 m/s垂直冲击下的结构响应、吸能与失效的动态行为,识别落重冲击过程中结构变形与失效模式、冲击响应特性及能量吸收与耗散机理。仿真结果表明,货舱地板下部结构的机身框组件、支撑件组件是主要吸能结构,冲击能量的吸收主要依靠上述结构的塑性变形与失效,紧固件的吸能贡献仅占1%左右。  相似文献   

4.
为了分析坠撞环境下的机身框段和客舱乘员的动态响应以及乘员伤害情况,开展了大型飞机典型机身框段(含2套三联座椅及4名乘员假人)在6.02 m/s速度下的垂向坠撞试验,获得了机身框段结构坠撞及乘员坠撞响应数据,进行了机身框段结构坠撞破坏及乘员伤害分析,并通过可生存空间、系留强度、乘员损伤、应急撤离4个方面对飞机适坠性进行评估。坠撞试验结果表明,客舱地板下部结构发生较大变形与破坏,在货舱地板下部结构中间支撑件区域和两侧客舱地板支撑立柱与机身框连接处产生3处塑性铰;客舱区域基本保持完整,可生存空间得到保持;座椅与客舱地板导轨的连接保持完好,且乘员安全带保持在原位;乘员假人头部伤害判据最大值为31.47,腰椎压缩载荷最大峰值为3 997.2 N;乘员假人向过道倾斜,过道仍保持通畅。通过飞机适坠性评估,在6.02 m/s的垂向坠撞速度下,乘员伤害风险较小。  相似文献   

5.
民机机身下部结构耐撞性优化设计   总被引:3,自引:2,他引:3  
 针对含多设计参数的典型民机机身下部结构耐撞性设计,提出了一种设计方法,该方法以最小化客舱地板的初始加速度峰值与最大化参考压溃状态的结构内能为优化双目标,通过Kriging模型对结构的冲击响应进行预测,采用非支配排序遗传算法II(NSGA-II)对双目标进行优化,进而由Nash-Pareto策略获得最优方案。为了得到最优设计方案,同时研究设计参数对机身结构耐撞性的影响,提出最大化期望提高与最大化预测方差同步加点准则建立代理模型。采用该设计方法,以典型民机机身下部结构设计问题为算例,对客舱地板支撑结构、货舱地板和泡沫构件形状参数进行优化。结果表明,相对原始设计客舱地板的加速度峰值降低约18.3%,次高加速度峰值也得到有效降低,改善了机身结构的耐撞性;Kriging模型预测响应与有限元分析结果误差小于1%,说明了设计方法的有效性。  相似文献   

6.
以民机典型机身段客舱下部结构为研究对象,建立了结构坠撞有限元模型,利用LS-Dyna软件进行了结构能量吸收特性分析。基于吸能结构思想,以降低传递到客舱地板的加速度载荷为设计目标,提出了一种民用飞机客舱地板下部结构吸能设计方法。设计制造了全尺寸的吸能结构试件,并进行了垂直坠撞试验。为评估坠撞分析与试验的相关性,提出了一种基于能量的能量吸收特性评估方法。首先对预试验分析结果与试验结果进行了相关性分析,根据相关性分析结果对分析模型进行了修正。修正后坠撞分析结果与试验结果的相关性表明,乘员质心处的平均加速度响应峰值误差为16.44%,最大平均反弹速度误差为10.53%,修正后模型的总体刚度与实际结构一致,分析获得的结构总体变形模式与试验结果基本一致。但能量吸收时间和加速度峰值出现的时间与试验结果相比误差较大,表明结构连接失效等结构建模细节对计算结果有显著的影响。  相似文献   

7.
以民用飞机典型机身舱段下部结构为研究对象,建立了结构坠撞有限元模型,利用Pam-Crash软件进行了结构能量吸收特性仿真分析,得到机身舱段的变形、零组件吸能情况及座椅滑轨处的加速度计算结果。分析结果显示飞机在9m/s的垂直速度撞击地面时,原机身结构设计乘员处的过载超过了人体加速度的耐受极限,不满足垂直撞击适坠性要求;而加装副框缘后的机身结构,乘员处的过载在人体可承受的加速度范围内,地板以上的生存空间不小于原来空间的85%,更改后的机身舱段结构设计满足垂直撞击适坠性要求。  相似文献   

8.
为了研究复合材料机身薄壁C型柱结构轴向压溃吸能特性、失效模式及C型柱多层壳单元建模方法,建立多层壳单元有限元模型,基于准静态轴向压溃实验结果进行对比验证。结果表明:C型柱多层壳单元模型能够在一定程度上模拟层间分层失效及压溃过程中的局部弯曲变形和层束弯曲失效模式;仿真与实验的载荷-位移曲线吻合性较好,压溃初始峰值载荷,比吸能以及压溃均值偏差较小;但C型柱结构压溃初始峰值载荷较大,载荷效率较低,需通过优化设计进一步降低其初始载荷峰值。  相似文献   

9.
 耐撞性是民机机身结构设计的一项重要要求。为了研究以波纹板为吸能结构的机身结构能量吸收特性和冲击响应特性,针对常规的机身构型,提出了3种货舱地板下部波纹板布局形式,建立了相应的机身段有限元模型,对机身垂直撞击刚性地面的情况进行分析。获得了不同布局形式下的波纹板变形模式和能量吸收情况,以及机身段的破坏模式、能量吸收情况和座椅处的过载-时间历程。3种布局的对比分析表明,在机腹隔框下端和蒙皮之间布置波纹板,可以使机身下部结构的破坏模式稳定,显著降低座椅处的过载峰值,缩短高过载脉宽,有效提高机身结构的耐撞性。  相似文献   

10.
为验证典型金属飞机机身结构的适坠性,开展了机身等直段结构在5.91 m/s下的垂直坠撞试验,得到了地面撞击载荷、机身结构变形及机身结构典型位置和假人的动态响应数据,分析了坠撞过程中机身结构的变形失效机理、载荷传递规律及能量吸收特性,提出了提高机身结构适坠性的设计方法。试验研究表明,在坠撞冲击载荷作用下,客舱地板横梁以下结构出现较为严重的变形,机身结构呈现非对称的破坏模式。在坠撞过程中,由于机身框和横梁变形吸收了大部分冲击能量,因此,相较于立柱处加速度峰值,传递至乘员处加速度峰值减小了90%左右。由综合适坠性评估指数可知,机身结构在5.91 m/s的坠撞速度下,具有良好的适坠性。  相似文献   

11.
带油箱结构的机身框段坠撞仿真分析   总被引:2,自引:1,他引:2  
何欢  陈国平  张家滨 《航空学报》2008,29(3):627-633
 主要研究了任意拉格朗日/欧拉耦合方法计算带油箱的机身框段的坠撞过程。首先,建立了带油箱结构的机身框段坠撞分析模型,包括机身框段结构模型和欧拉流体模型。采用水代替油箱内部燃油,考虑了不同装水量对机身框段耐撞性的影响。分析了坠撞过程中的液体晃动和泼溅与机身坠撞响应的影响,给出了装水量和机身框段最大垂向压缩位移、最大过载和能量吸收等参数之间的关系。通过仿真分析,揭示了冲击载荷作用下油箱内部燃油量对机身框段各个部分结构的损伤破坏的影响。研究指出,在垂直撞击环境下,机身加强框和蒙皮是主要的吸能结构。在油箱内装水量多的情况下,油箱结构的吸能作用不能忽略。给出了应急着陆或可生存坠撞事故发生前,飞行员所应采取的紧急措施。  相似文献   

12.
Drop test and crash simulation of a civil airplane fuselage section   总被引:2,自引:0,他引:2  
Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously affected by the loading speed. The relations between the loading speed and the average ultimate shear, tension loads were expressed by two logarithmic functions. Then, a vertical drop test of a civil airplane fuselage section was conducted with an actual impact velocity of6.85 m/s, meanwhile the deformation of cabin frame and the accelerations at typical locations were measured. The finite element model of a main fuselage structure was developed and validated by modal test, and the error between the calculated frequencies and the test ones of the first four modes were less than 5%. Numerical simulation of the drop test was performed by using the LS-DYNA code and the simulation results show a good agreement with that of drop test. Deforming mode of the analysis was the same as the drop test; the maximum average rigid acceleration in test was 8.81 g while the calculated one was 9.17 g, with an error of 4.1%; average maximum test deformation at four points on the front cabin floor was 420 mm, while the calculated one was 406 mm, with an error of 3.2%; the peak value of the calculated acceleration at a typical location was 14.72 g, which is lower than the test result by 5.46%; the calculated rebound velocity result was greater than the test result 17.8% and energy absorption duration was longer than the test result by 5.73%.  相似文献   

13.
舰载无人机拦阻着舰中机身冲击响应分析   总被引:1,自引:1,他引:0  
熊文强  张闰  张晓晴  朱小龙  高宗战  刘晓明  何敏  姚小虎 《航空学报》2019,40(12):222892-222892
针对某舰载无人机拦阻着舰过程中的机体强度问题,以其中机身结构为主要研究对象,首次设计了包括中机身结构与前后机身、机翼假件以及拦阻钩等构件的地面拦阻模拟试验方案,并搭建了相应装置,采用地面试验和刚柔耦合仿真模拟2种方法,对拦阻着舰过程中拦阻力冲击下中机身结构的动态响应特性进行了全面分析。试验与仿真结果表明:中机身最大航向过载沿两条主传力路径自后机身到前机身方向衰减,下传递路径点的过载峰值明显大于上传递路径点的峰值;发现最大过载点位于拦阻接头处,应变危险点位于机腹梁前段处;中机身结构上各测点的试验和仿真过载误差均在5%以内,应变误差均在8%以内,验证了试验结果的有效性和刚柔耦合数值仿真方法的可行性。地面拦阻试验及数值仿真的联合分析可为舰载无人机机身结构强度设计提供重要参考,并为后续舰载无人机的拦阻着舰分析以及机身结构响应预测提供依据。  相似文献   

14.
《Air & Space Europe》2001,3(3-4):228-233
Within the frame work of Brite-Euram programme CRASURV ‘Commercial Aircraft — Design for Crash Survivability’, technology is being developed for the design of composite air frames with respect to crashworthiness. A significant part of the project consists of the design, fabrication and drop-testing of two representative composite fuselage sections, to generate the experimental data needed for the validation of new energy absorbing structural concepts, validation of simulation tools to model and analyse these structures subjected to crash loads.  相似文献   

15.
Recent aircraft as well as rotorcraft design technologies include more and more composite materials. Their high mechanical characteristics and high mass specific energy absorption capability motivate their use in large primary structures as well as in sub-floor structural and crashworthy components in preference to metals. Due to the increased performance of computers and new explicit finite element (FE) software developments industry now considers using crash simulation technologies to study the crashworthiness of new aircraft design. In order to address the crash analysis of composite structures, which is much more difficult than the behaviour of ductile metallic structures, a German/French research co-operation was set up between ONERA and DLR. This paper summarises results from the first 3 years collaboration and some work performed within a European research project on composite fuselage structures. In the first part of the paper, ONERA presents its contribution to the characterisation of composite materials from 10−5 s−1 up to 100 s−1 on hydraulic machines. Simulations have been undertaken to model the tests and evaluate the FE codes. In the second part DLR studies are presented on the application of a commercial explicit FE code to simulate the behaviour of generic energy absorbing composite sub-floor elements, representative for helicopters and general aviation aircraft, under low velocity crash conditions (up to 15 m/s). This includes some comparisons between predicted structural response and failure modes with observed test results.  相似文献   

16.
Full-scale crash test and FEM simulation of a crashworthy helicopter seat   总被引:2,自引:0,他引:2  
Crashworthy seat structure with considerable energy absorption capacity is a key component for aircraft to improve its crashworthiness and occupant survivability in emergencies.According to Federal Aviation Administration(FAA) regulations,seat performance must be certified by dynamic crash test which is quite expensive and time-consuming.For this reason,numerical simulation is a more efficient and economical approach to provide the possibility to assess seat performances and predict occupant responses.A numerical simulation of the crashworthy seat structure was presented and the results were also compared with the full-scale crash test data.In the numerical simulation,a full-scale three-dimensional finite element model of the seat/occupant structure was developed using a nonlinear and explicit dynamic finite element code LS-DYNA3D.Emphasis of the numerical simulation was on predicting the dynamic response of seat/occupant system,including the occupant motion which may lead to injuries,the occupant acceleration-time histories,and the energy absorbing behavior of the energy absorbers.The agreement between the simulation and the physical test suggestes that the developed numerical simulation can be a feasible substitute for the dynamic crash test.   相似文献   

17.
考察机身收缩段的复合材料Ω型加筋壁板前段和后段连接结构在拉伸载荷下的承载能力,开展了拉伸破坏试验研究。试验件为壁板与框呈75°夹角的倾斜结构,试验考核了加筋壁板、连接框、连接角盒和紧固件的应变水平、试验件的载荷-位移曲线和破坏载荷。试验结果表明,Ω型加筋壁板前后段连接结构在拉伸载荷下,角盒和框的连接处的紧固件以及框的转角处最先发生破坏。试验结果可作为飞行机身复合材料结构连接的设计和评定依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号