首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solar cycle 22 had significant, large fluence, energetic particle events on a scale reminiscent of the 19th solar cycle. Examination of the characteristics of these large events suggests that some of the old concepts of spectral form, intensity-time envelope and energy extrapolations, used to estimate the dose from large events that occurred during previous solar cycles should be re-evaluated. There has also been a dramatic change in perspective regarding the source of solar protons observed in interplanetary space. Very large fluence events are associated with powerful fast interplanetary shocks. The elemental composition and charge state of these events is suggestive of a dominate source in the solar corona and not from a very hot plasma. Furthermore, there is a strong suggestion that the intensity-time profile observed in space is dominated by the connection of the observer to an interplanetary shock source rather than to a unique location near the surface of the sun. These concepts will be examined from the perspective of energetic particles contributing to the dose experienced by an astronaut on an interplanetary space mission.  相似文献   

2.
The sun has produced several high energy and large fluence solar proton events during solar cycle 22. This recent activity is similar to activity that occurred in the 19th solar cycle before the advent of routine space measurements. In a review of the recent events and a comparison with significant solar proton events of previous solar cycles, it appears that the 20th and 21st solar cycles were deficient in the total fluence of solar particles as detected at the earth. Therefore, when models of maximum solar proton fluxes to be encountered for deep space missions are developed, solar proton data acquired during the present solar cycle should be incorporated.  相似文献   

3.
Meteor satellite observations in March, August, September and October 1989 recorded intensive solar proton events which caused a disturbed radiation situation in the near-Earth space. The paper presents the results of analyzing flux and spectral characteristics of the events and their relation to heliogeophysical situation.  相似文献   

4.
We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.  相似文献   

5.
A flare east of central meridian on 2003 October 28 produced a relativistic particle event at Earth, although it was located far from the footpoint of the nominal interplanetary Parker spiral. From a study of the onset times of the event at different neutron monitors we conclude that the earliest arriving solar particles may be neutrons. The first relativistic protons (prompt component) arrived a few minutes later. Metre wave imaging suggests that electrons are not only accelerated in the flaring active regions, but at several places far away, including the western hemisphere. Simultaneous Type III emission and associated Langmuir waves demonstrates that these regions are connected to the Earth. We suggest that, like in a few other nominally poorly connected particle events, promptly escaping relativistic protons were not accelerated in the flaring active region, but at remote places in relationship with the global magnetic restructuring in the course of a huge coronal mass ejection.  相似文献   

6.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

7.
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.  相似文献   

8.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

9.
The support vector machine (SVM) combined with K-nearest neighbors (KNN), called the SVM-KNN method, is new classing algorithm that take the advantages of the SVM and KNN. This method is applied to the forecasting models for solar flares and proton events. For the solar flare forecasting model, the sunspot area, the sunspot magnetic class, and the McIntosh class of sunspot group and 10 cm solar radio flux are chosen as inputs; for the solar proton event forecasting model, the inputs include the longitude of active regions, the flux of soft X-ray, and those for the solar flare forecasting model. Detailed tests are implemented for both of the proposed forecasting models, in which the SVM-KNN and the SVM methods are compared. The testing results demonstrate that the SVM-KNN method provide a higher forecasting accuracy in contrast to the SVM. It also gives an increased rate of ‘Low’ prediction at the same time. The ‘Low’ prediction means occurrence of solar flares or proton events with predictions of non-occurrence. This method show promise for forecasting models of solar flare and proton events.  相似文献   

10.
Atmospheric effects of energetic solar proton events (SPE) were studied in the North Atlantic region, for particle energies above 90 MeV, using NCEP/NCER reanalysis data and weather charts. A significant lowering of the pressure levels in the troposphere accompanied by an increase of the cyclonic vorticity was found near the south-eastern coast of Greenland on days following the event onsets. According to the weather charts, the detected effects are caused by the re-deepening (the regeneration) of well developed cyclones that seems to be intensified during the SPE under study. A joint analysis of the pressure and temperature variations showed a noticeable decrease of the temperature in the rear of the deepening cyclones that may be due to the cold advection increase. The results obtained suggest the influence of energetic SPE on the cyclone development as well as the importance of the frontal zone situated near the Greenland coast for this influence. The physical mechanism may involve the increase of cold advection due to changes in the temperature gradients in this region, resulting from radiative forcing and/or latent heat release related to variations of cloudiness.  相似文献   

11.
Profiles of O3 partial pressure and of other minor atmospheric constituents (NO, NO2, HCL, HF and H2O), observed in the middle atmosphere during Solar proton events (20.04.1998; 05.04.2000), were analysed. Conclusions were drawn that under SCR impact a short-term O3 partial pressure increase and destruction of some freon constituents took place.  相似文献   

12.
Data from geostationary operational environmental satellite (GOES) series were used to identify intense solar energetic particle (SEP) events occurred during the solar activity cycle no. 23. We retrieved O3, NO, NO2, HNO3, OH, HCl and OHCl profiles coming from different satellite sensors (solar occultation and limb emission) and we looked for the mesospheric/stratospheric response to SEPs at high terrestrial latitudes. The chemistry of the minor atmospheric components is analysed to evaluate the associated odd nitrogen (NOx) and odd hydrogen (HOx) production, able to cause short (h) and medium (days) term ozone variations. We investigated the effects of SEPs on the polar atmosphere in three different seasons, i.e., January 2005, April 2002 and July 2000. The inter-hemispheric variability of the ozone, induced by the SEP series of January 2005, has been compared with the effects connected both to larger and quite similar events. We found that during SEP events: (i) solar illumination is the key factor driving SEP-induced effects on the chemistry of the polar atmosphere; (ii) even events with limited particle flux in the range 15–40 MeV are able to change the abundance of the minor constituents in the mesosphere and upper stratosphere.  相似文献   

13.
The proton telescope aboard the GOES-7 satellite continuously records the proton flux at geosynchronous orbit, and therefore provides a direct measurement of the energetic protons arriving during solar energetic particle (SEP) events. Microelectronic devices are susceptible to single event upset (SEU) caused by both energetic protons and galactic cosmic ray (GCR) ions. Some devices are so sensitive that their upsets can be used as a dosimetric indicator of a high fluence of particles. The 93L422 1K SRAM is one such device. Eight of them are on the TDRS-1 satellite in geosynchronous orbit, and collectively they had been experiencing 1-2 upset/day due to the GCR background. During the large SEP events of 1989 the upset rate increased dramatically, up to about 250 for the week of 19 Oct, due to the arrival of the SEP protons. Using the GOES proton spectra, the proton-induced SEU cross section curve for the 93L422 and the shielding distribution around the 93L422, the calculated upsets based on the GOES satellite data compared well against the log of measured upsets on TDRS-1.  相似文献   

14.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   

15.
The effect of the proton flare of 22 November 1977 on the various levels in the middle atmosphere and the bottom-side ionosphere is studied in order to compare synchronous phenomena in the middle atmosphere with phenomena in upper regions and to investigate the response of middle atmosphere to the penetration of high energy solar particles and radiation.  相似文献   

16.
In this study we applied again to the outstanding solar particle event of 23 February 1956, the largest one in the entire history of observations of solar cosmic rays. Due to significant improvement of the analysis/modeling techniques and new understanding of physical processes in the solar atmosphere and interplanetary space, a possibility arises to interpret the old data in the light of modern concept of multiple particle acceleration at/near the Sun. In our new analysis the data of available then neutron monitors and muon telescopes are used. The technique of the analysis includes: (a) calculation of asymptotic cones of ground-based detectors; (b) modeling of cosmic ray detector responses at variable parameters of the flux of solar relativistic protons; (c) determination of primary solar proton parameters outside magnetosphere by comparison of computed responses with observations. Certain evidence was obtained that the flux of relativistic solar protons consisted of two distinct components: prompt and delayed ones. The prompt component with exponential energy spectrum caused a giant impulse-like increase at a number of European cosmic ray stations. The delayed component had a power-law spectrum and was a cause of gradual increase at cosmic ray stations in the North American region. A numerical simulation of the proton acceleration in the vicinity of the magnetic reconnection region brings to the proton spectrum with exponential dependence on energy. This agrees with observational data for the prompt component. It is also shown that the huge increase in ∼5000% on neutron monitors was due to the prompt component only with the exponential proton spectrum. The power-law spectrum of comparable intensity gave considerably smaller effect.  相似文献   

17.
Numerical simulations of two types of flares indicate that magnetic reconnection can provide environments favorable for various particle acceleration mechanisms to work. This paper reviews recent test particle simulations of DC electric field mechanism, and discusses how the flare particles can escape into the interplanetary space under different magnetic configurations.  相似文献   

18.
Fluxes of energetic solar protons penetrate deep into the Earth’s polar cap middle atmosphere. Interacting with molecules of the air they cause additional dissociation and ionization, and the formed NOx, OHy and ions enter chemical and ion-molecular reactions. Induced changes of the ionospheric D-layer are modeled by a 1D model of lower ionosphere with chemistry, using neutral species concentrations calculated by a 1D photochemical time-dependent model. Changes of the electron and ion densities, and the most important ionospheric parameters are calculated after SPE with the onset on July 14, 2000 and the results are compared with our results obtained previously for the October 19, 1989 SPE. It is shown that not only electron density increases after SPE, but also the amount of clusters. It is found that the magnitude of the ionospheric response depends on season.  相似文献   

19.
Type III-L bursts constitute a class of type III bursts that are intense, complex, and of long duration at hectometric wavelengths. They are often associated with major flares and fast coronal mass ejections. Several observations suggested that the electron beams that produce these complex hectometric emissions could be accelerated and injected in the low or in the middle corona. In this study, we revisit the origin of these bursts by tracing the progression of the events from the low corona to the interplanetary medium. We show that type III-L features are related to sudden changes in the radio emission observed at metric and decametric wavelengths, in particular the onset of new emitting sources at positions that can be at large distances from the flare site.  相似文献   

20.
Flux and dose rate dynamics of solar cosmic rays were measured by the Lyulin dosimeter during the events 19 October 1989 and 23 March 1991. The maximum dose rate registered was 0.4, 0.12 and 0.01 cGy/hour, respectively. Based on the latitude distribution of particle flux a power law form for the energy spectra of solar protons in the anisotropic phase of the events on 19 October 1989 and 23 March 1991 was determined. It was obtained that after the development of geomagnetic storm protons with energies more than 1 GeV were registered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号