首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
While atmospheric Cherenkov telescopes have a small field of view and a small duty fraction, arrays of particle detectors on ground have a 1 sr field of view and a 100% duty fraction. On the other hand, particle detector arrays have a much higher energy threshold and an inferior hadron rejection as compared to Cherenkov telescopes. Low threshold particle detector arrays would have potential advantages over Cherenkov telescopes in the search for episodic or unexpected sources of gamma rays in the multi-TeV energy range. Ways to improve the threshold and hadron rejection of arrays are shown, based on existing technology for the timing method (with scintillator or water Cherenkov counters) and the tracking method (with tracking detectors). The performance that could be achieved is shown by examples for both methods. At mountain altitude (about 4000 m or above) an energy threshold close to 1 TeV could be achieved. For any significant reduction of the hadronic background by selecting muon-poor showers a muon detection area of at least 1000 m2 is required, even for a compact array.  相似文献   

2.
The principles of an ionisation calorimeter, an instrument used to measure the energy of cosmic-ray particles and the dependence of its parameters on the conditions of operation, are discussed.Possible applications of this calorimeter in the study of nuclear interactions of 1011–1013 eV cosmic-ray particles, study of the composition of high-energy primary cosmic rays (1011–1014eV), and investigation of the electron component of cosmic-ray primaries and high-energy -rays are reviewed.Translated by Express Translation Service, Wimbledon, London.  相似文献   

3.
Nuclear-based techniques for the detection of bulk explosives are described. These techniques are shown to provide the only feasible approach for meeting the operational criteria of high throughput of screening luggage and cargo against concealed explosives in air transportation. The nuclear-based techniques are characterized by probing the screened object (e.g. luggage) with highly penetrating radiation, i.e. neutrons or energetic gamma rays. High-energy gamma rays produced by the probing radiation are characteristic to the elemental composition of the objects. The gamma rays are detected by an array of detectors placed near the object. The intensity, energy, and spatial distribution of the detected radiation and their relationship to the primary radiation allow a computer to determine the presence or absence of explosives. The nature of neutron interactions, the gamma detectors used, and the data analysis on which the decision is based are discussed  相似文献   

4.
It is possible to predict the amount of gamma rays which are produced in various astronomical objects = gamma rays due to nuclear reactions, to bremsstrahlung, to cosmic rays, to annihilation of matter and anti-matter. These predictions are compared to the results of the observations with Explorer XI and are used to suggest new experiments. The following experiments are suggested:
  1. (1)
    to measure the γ flash associated with Supernovae;  相似文献   

5.
Current approaches to the identification of VHE gamma rays using stereo images of erenkov light flashes are reviewed. The method of analysis developed by the University of Durham group involving a measure of cascade development is described. This method is applied to observations of a burst of VHE gamma rays from AE Aqr and enhancement of the gamma ray signal is demonstrated.  相似文献   

6.
The existing paradigm of the origin of Galactic cosmic rays places strong supernovae shocks as the acceleration site for this material. However, although the EGRET gamma-ray telescope has reported evidence for GeV gamma rays from some supernovae, it is still unclear if the signal is produced by locally intense cosmic rays. Although non-thermal X-ray emissions have been detected from supernova remnants and interpreted as synchrotron emission from locally intense electrons at energies up to 100 TeV, the inferred source energy spectral slopes seem much steeper than the electron source spectrum observed through direct measurements. It remains the case that simple energetics provide the most convincing argument that supernovae power the bulk of cosmic rays. Two characteristics which can be used to investigate this issue at high energy are the source energy spectra and the source composition derived from direct measurements.  相似文献   

7.
Electrons are more susceptible to energy losses in magnetic fields and photon fields than protons. Hence, photons at various wavelengths, including gamma rays, bring more readily information on high-energy electrons than on protons. Neutrinos provide a unique tracer for protons. Furthermore, at high energies the neutrino flux can considerably exceed the gamma-ray flux, as gamma rays above ~1 MeV are degraded by γ-γ interactions in compact high-intensity sources. Active galactic nuclei (AGN) with outputs >1045 ergs s?1 and dimensions ~1014 cm would constitute such sources. If the AGN are powered by ultra-massive black holes, then these numerical conditions are satisfied, and at high energies the flux J v >J γ . Berezinsky and Ginzburg have pointed out that the photon intensity around spinars is not sufficient to cause gamma-ray degradation. These authors have demonstrated that the measurement of neutrino flux, combined with the measurement (or upper limit) of gamma-ray flux would show whether the active galactic nuclei are powered by massive black holes or spinars. We estimate that gamma rays would be degraded at spinars, too, at energies >1 GeV.  相似文献   

8.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

9.
The detection of the Crab Nebula as a steady source of TeV gamma rays puts the field of Very High Energy Gamma-Ray Astronomy on a firm observational basis and permits a critical re-assessment of the claims for the detection of a multitude of episodic binary sources. A new generation of detectors in the TeV and PeV energy regions is coming on-line; together with the telescopes of the Gamma-Ray Observatory these instruments will present a new perspective on one of the last frontiers of astronomy.  相似文献   

10.
After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ∼constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.  相似文献   

11.
黄涛  赵明桂 《航空学报》1995,16(1):99-104
发动机进气道是飞行器的一个强散射源。本文采用射线跟踪法研究了任意截面形状,不同管道的电磁散射特性。用这种方法计算了一个角反射器雷达截面和一个实际使用的进气道的雷达散射截面,测量结果和计算结果的一致性表明,该方法是有效的。  相似文献   

12.
The problem of the origin and distribution of cosmic rays in the Galaxy is introduced by summarizing the literature on the radio and -ray studies of the Galaxy, discussing the propagation of cosmic rays in the interstellar medium, and listing the observed properties of cosmic rays. The localization of cosmic-ray electrons to their parent galaxies is an indicator that processes leading to cosmic-ray production may be common to galaxies like our own. The studies of external galaxies are therefore relevant to our own and have the advantage of better perspective.Studies of cosmic rays in exsternal galaxies are limited to the electron component which radiates synchrotron emission at radio frequencies. Multi-colour photometry of galaxies allows the separation of stellar populations that harbour particular classes of cosmic-ray sources. Statistical studies aimed at correlating integrated radio and optical properties of galaxies have reached conflicting conclusions. Although a correlation of cosmic rays with the older stellar population is proposed by some authors, others argue that the young stellar population harbours cosmic ray sources.Morphological studies of resolved galaxies provide information on the distributions of cosmic-ray electrons in galaxies. Studies in which the resolution of the radio images is much lower than in the optical are limited and have also produced contradictory results. Radio imaging at optical resolution is required for a direct comparison of cosmic-ray distributions with stellar distributions. Such studies are reviewed and the constraints they impose on cosmic-ray propagation and distribution of cosmic-ray sources is discussed.Theoretical cosmic-ray acceleration mechanisms are surveyed and an attempt is made to determine likely contributors. Mechanisms associated with shock waves in a variety of astrophysical settings are reviewed. Acceleration mechanisms not involving shocks, are also discussed. Finally, the status of the field is summarized along with some speculation on the future directions the field may take.  相似文献   

13.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

14.
Recently the galactic plane has been observed in the low and medium energy gamma-ray range in the directions towards the center and anticenter. Spectral measurements are now available at those energies, where the contribution from π°-decay gamma rays can be neglected. The high MeV-fluxes observed in both parts of the Galaxy are an indication of either a strong electron induced component or a high contribution from unresolved sources. Several interstellar cosmic-ray electron spectra have been used to calculate the contribution from electron bremsstrahlung and inverse Compton collisions with optical, infrared and 2.7 K black-body photons. From these calculations restrictions on the interstellar electron spectrum are derived.  相似文献   

15.
Cross Polarization in Radomes: A Program for Its Computation   总被引:1,自引:0,他引:1  
A study is made of transmission by radomes, with particular reference to cross polarization, and of the consequent radiation patterns of the radome with its aerial for both linear and circular polarizations. The work is embodied in a computer program which considers a scanner of specifiable size, position, and power distribution at different orientations inside a multilayer radome of given dimensions, class of shape, and construction in terms of the number and properties of its layers. Initially, rays are traced from points on the scanner, and details of their paths and propagation are presented in tables of preliminary results; later, diffraction theory is used. Polar diagrams of cross polarization, of main beam, etc., are presented in final tables for the system. Nearly all the parameters are specifiable, and so the program has reasonably general applicability, and it can also assess the effects of bandwidth, tapering of layer thickness, complex permittivity, and other parameters of the system.  相似文献   

16.
利用放射性同位素γ射线测量飞机燃油密度的方法研究   总被引:4,自引:0,他引:4  
李楠  吕俊芳 《航空学报》2002,23(6):587-590
 介绍了应用放射性同位素γ射线测量飞机燃油密度的机理 ,并利用自行设计的实验室飞机燃油密度测量系统验证了测量机理的可行性。测量结果表明 ,该方法能够达到较高的密度测量精度 ,具有广阔的应用前景。  相似文献   

17.
Evidence for acceleration of charged particles in the solar atmosphere is reviewed with specific reference to production of gamma rays and neutrons at the Sun. Fluxes of these components at the Earth, based on theoretical assumptions are also reviewed and estimates and conditions for obtaining observable fluxes from Syrovatskii's dynamic dissipation model are considered. Knowledge about the Sun, to be derived from such observations, is discussed. Finally, a brief review of the present status of experimental observations and suggestions for new experimental approaches are given. Work performed while author was a guest of the Max-Planck-Institute for Physics and Astrophysics, München, on sabbatical leave from the University of New Hampshire, Durham, New Hampshire, U.S.A. Partially supported by a NATO Senior Fellowship in Science.  相似文献   

18.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

19.
Cosmic-ray acceleration and transport is considered from the point of view of application to diffuse galactic -ray sources. As an introduction we review several source models, in particular supernovae exploding inside or near large interstellar clouds. The complex problem of cosmic ray transport in random electromagnetic fields is reduced to three cases which should be sufficient for practical purposes. As far as diffusive acceleration is concerned, apart from reviewing the basic physical principles, we point out the relation between shock acceleration and 2nd order Fermi acceleration, and the relative importance of the two processes around interstellar shock waves. For -ray source models the interaction of cosmic rays with dense clouds assumes great importance. Past discussions had been confined to static interactions of clouds with the ambient medium in the sense that no large scale mass motions in the ambient interstellar medium were considered. The well-known result then is that down to some tens of MeV or less, cosmic-ray nucleons should freely penetrate molecular clouds of typical masses and sizes. The self-exclusion of very low energy nucleons however may affect electron transport with consequences for the Bremsstrahlung -luminosity of such clouds.In this paper we consider also the dynamical interaction of dense clouds with a surrounding hot interstellar medium. Through cloud evaporation and accretion there exist mass flows in the cloud surroundings. We argue that in the case of (small) cloud evaporation the galactic cosmic rays will be essentially excluded from the clouds. The dynamic effects of cosmic rays on the flow should be minor in this case. For the opposite case of gas accretion onto (large) clouds, cosmic-ray effects on the flow will in general be large, limiting the cosmic-ray compression inside the cloud to dynamic pressure equilibrium. This should have a number of interesting and new consequences for -ray astronomy. A first, qualitative discussion is given in the last section.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.  相似文献   

20.
Proton acceleration in nearby blazars can be diagnosed measuring their intense TeV -ray emission. Flux predictions for 1101+384 (Mrk421) and 1219+285 (ON231), both strong EGRET sources (0.1 – 10 GeV), are obtained from model spectra of unsaturated synchrotron pair cascades fitted to publicly available multifrequency data. An experimen tal effort to confirm the predicted emission in the range 1–10 TeV would be of great importance for the problems of the origin of cosmic rays, the era of galaxy formation and the cosmological distance scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号