首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cosmic-ray scintillations registered by ground-base observations reflect, as a rule, the action of a whole number of processes proceeding in interplanetary space and Earth's magnetosphere. The study of scintillation phenomena in cosmic rays, is, in fact, divided into a number of problems connected with the interaction of charged particles of cosmic radiation with the matter and fields which they encounter in the entire length of their propagation. The cosmic-ray scintillations established by different authors from the data of ground-base and high-altitude devices for quiet and disturbed periods, as well as the theoretical calculations of different models and mechanisms of the origin and development of cosmic-ray scintillations are analyzed. High-frequency scintillations of f 10-5 Hz are shown to be precursors of an approaching shock wave, scintillations with periods of the order of 10–20 and 40–50 min being most sensitive to disturbances of interplanetary medium near the Earth. Since cosmic rays of different energies are sensitive to different processes in interplanetary space at different distances from the Earth, one can sound the conditions in interplanetary medium up to 1015 cm from the Earth by measuring particle fluxes at different energy ranges.  相似文献   

2.
The correlation between diffuse galactic gamma rays and gas tracers is studied using the final COS-B database and H i and CO surveys covering the entire galactic plane. A good quantitative fit to the gamma rays is obtained, with a small galacto-centric gradient in the gamma-ray emissivity per hydrogen atom. The average ratio of H2 column density to integrated CO temperature is determined, the best estimate being (2.3 ± 0.3) × 102 molecules cm–2 (K km s–1)–1. Strictly taken, this value is an upper limit. The corresponding mass of molecular hydrogen in the inner galaxy, derived using both 1st and 4th quadrants, is 1.0 × 109 M .The softer gamma-ray spectrum towards the inner galaxy found in previous work can be attributed to a steeper emissivity gradient at low energies and/or to a softer gamma-ray spectrum of the emission distributed like molecular gas. A steeper emissivity gradient at low energies could be related to cosmic-ray spectral variations in the Galaxy, to different distributions of cosmic-ray electrons and nuclei, or to a contribution from discrete sources. A softer spectrum for the emission associated with molecular clouds may be physically related to the clouds themselves (i.e., cosmic-ray spectral variations) or to an associated discrete source distribution.New results on the temporal and spectral characteristics of the high-energy (50 MeV to 5 GeV) gammaray emission from the Vela pulsar are presented. The whole pulsed flux is found to exhibit long-term variability. Five discrete emission regions within the pulsar lightcurve have been identified, with the spectral characteristics and long-term behaviour being different. These characteristics differ significantly from those reported earlier for the Crab pulsar. However, geometrical pulsar models have been proposed (e.g., Morini, 1983; Smith, 1986) which could explain many of these features.  相似文献   

3.
On an astronomical scale cosmic rays must be considered a tenuous and extremely hot (relativistic) gas. The pressure of the cosmic-ray gas is comparable to the other gas and field pressures in interstellar space, so that the cosmic-ray pressure must be taken into account in treating the dynamical properties of the gaseous disk of the galaxy. This review begins with a survey of present knowledge of the cosmic-ray gas. Then the kinetic properties of the gas are developed, followed by an exposition of the dynamical effects of the cosmic-ray gas on a large-scale magnetic field embedded in a thermal gas. The propagation of low-frequency hydromagnetic waves is worked out in the fluid approximation.The dynamical properties of the gaseous disk of the galaxy are next considered. The equations for the equilibrium distribution in the direction perpendicular to the disk are worked out. It is shown that a self-consistent equilibrium can be constructed within the range of the observational estimates of the gas density, scale height, turbulent velocity, field strength, cosmic-ray pressure, and galactic gravitational acceleration. Perturbation calculations then show that the equilibrium is unstable, on scales of a few hundred pc and in times of the order 2 × 107 years. The instability is driven about equally by the magnetic field and the cosmic-ray gas and dominates self-gravitation. Hence the instability dominates the dynamics of the interstellar gas and is the major effect in forming interstellar gas clouds. Star formation is the end result of condensation of the interstellar gas into clouds, indicating, then, that cosmic rays play a major role in initiating star formation in the galaxy.The cosmic rays are trapped in the unstable gaseous disk and escape from the disk only in so far as their pressure is able to inflate the magnetic field of the disk. The observed scale height of the galactic disk, the short life (106 years) of cosmic-ray particles in the disk of the galaxy, and their observed quiescent state in the disk, indicate that the galactic magnetic field acts as a safety valve on the cosmic ray pressure P so that PB 2/8. We infer from the observed life and quiescence of the cosmic rays that the mean field strength in the disk of the galaxy is 3–5 × 10–6 gauss.  相似文献   

4.
Velocity and direction of the flow of the interstellar helium and its temperature and density have been determined from the measurements of the ULYSSES/GAS experiment for two different epochs: during the in-ecliptic path of ULYSSES, representing solar maximum conditions, and during the south to the north pole transition (11/94-6/95), close to the solar minimum conditions. Within the improved error bars the values are consistent with results published earlier.The determination of the density n of the interstellar helium at the heliospheric boundary from observations in the inner solar system requires knowledge about the loss processes experienced by the particles on their way to the observer. The simultaneous observation of the helium particles arriving on direct and indirect orbits at the observer provides a tool to directly determine the effects of the loss processes assumed to be predominantly photoionization and — for particles travelling close to the Sun — electron impact ionization by high-energy solar wind electrons.Such observations were obtained with the ULYSSES/GAS instrument in February 1995, before the spaceprobe passed its perihelion. From these measurements values for the loss rates and the interstellar density could be derived. Assuming photoionization to be the only loss process reasonable fits to the observations were obtained for an ionization rate = 1.1 · 10–7 s–1 and a density n 1.7 · 10–2 cm–3. Including, in addition, electron impact ionization, a photoionization = 0.6 · 10–7 s–1 was sufficient to fit both observations, resulting in a density n 1.4 · 10–2 cm–3.On leave from Space Research Centre, Warsaw, Poland.  相似文献   

5.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

6.
Results of the observations of Geminga (2CG 195 + 4) in the energy range E 1012 eV, carried out in 1979, 1981, and 1983 with the Tien Shan high-altitude facility for recording the erenkov flashes of extensive air showers are reported. The mean flux density averaged over the whole protracted data is (5.7 ± 2.5) × 10–11 quanta cm–1 s–1. The flux is variable with a period 59 s. The character of the period variation with time is hard to be reconciled with earlier findings by other authors. The importance of further simultaneous observations at various energies is indicated.  相似文献   

7.
Cosmic-ray isotope observations from NASAs Advanced Composition Explorer (ACE) mission have been used to investigate the composition of cosmic-ray source material. Source abundances relative to 56Fe are reported for eleven isotopes of Ca, Fe, Co, and Ni, including the very rare isotopes 48Ca and 64Ni. Although the source abundances range over a factor 104, most of the ratios to 56Fe are consistent with solar-system values to within 20%. However, there are some notable differences, the most significant being an excess of (70±30)% relative to the solar system for the cosmic-ray source ratio 58Fe/56Fe. The possible association of such an excess with a contribution to the cosmic-ray source from Wolf–Rayet star ejecta is discussed.  相似文献   

8.
The modern state of gamma-ray astronomy is reviewed, the paper being mainly devoted to the theoretical models that describe generation of gamma-ray emission under astrophysical conditions. Basic information on the processes of generation and absorption of gamma-rays, as well as the results of observations for various gamma-ray photon energies are reported.In the region of soft gamma-ray emission (i.e., for energies less than tens of MeV), where emission in gamma-ray lines dominates, we also discuss the nature of gamma-ray bursts, the origin of gamma-ray emission from the galactic centre, etc.Discrete sources and, in particular, the mysterious source Cyg X-3 are discussed in the region of very high (E > 1012 eV) and ultra-high (E > 1015 eV) energy gamma-ray emission.A larger portion of the review is devoted to the analysis of cosmic-ray origin on the basis of the available gamma-ray data in the region from several tens of MeV to several GeV. The peculiarity of this energy range is, in particular, in the fact that the diffuse galactic emission was observed mainly there. We also discuss the problem of determination of the cosmic-ray density gradient from the gamma-ray data.The origin of high-latitude gamma-ray emission, the problem of galactic gamma-ray halo, etc., are discussed.The theoretical models explaining the nature of unidentified gamma-ray sources, as well as the results of measurements and theoretical estimations of a gamma-ray flux from SN1987A are analysed.List of Notations m electron mass, m = 9.108 × 10–28 g, - M proton mass, M = 1.672 × 10–24 g, - e electron charge, e = 4.803 × 10–10 CGS - c velocity of light, c = 2.9979 × 1010 cm s–1, - k Boltzmann constant, k = 1.380 × 10–16 erg grad–1, - e electron - p proton - gamma-ray photon - p antiproton - 0 0-meson - -lepton - e + positron - r, , x radio-frequency, gamma-ray, and X-ray emission bands - E total energy of a particle - E k kinetic energy - p particle momentum - spectral index for particles - spectral index for emission - n particle density (concentration) - H magnetic field strength - T temperature - ph energy of low-energy photons - emission frequency - r H Larmor radius of relativistic particles - k wave number - , z cylindric coordinates, in this case the coordinate (radius) along the galactic disk, z perpendicular to the galactic disk - M solar mass, M = 1.99 × 1033 g.  相似文献   

9.
Interstellar dust detected by the dust sensor onboard Ulysses was first identified after the Jupiter flyby when the spacecraft's trajectory changed dramatically (Grün et al., 1994). Here we report on two years of Ulysses post-Jupiter data covering the range of ecliptic latitudes from 0° to –54° and distances from 5.4 to 3.2 AU. We find that, over this time period, the flux of interstellar dust particles with a mean mass of 3·10–13 g stays nearly constant at about 1·10–4, m–2 s–1 ( sr)–1, with both ecliptic latitude and heliocentric distance.Also presented are 20 months of measurements from the identical dust sensor onboard the Galileo spacecraft which moved along an in-ecliptic orbit from 1.0 to 4.2 AU. From the impact direction and speeds of the measured dust particles we conclude that Galileo almost certainly sensed interstellar dust outside 2.8 AU; interstellar particles may also account for part of the flux seen between 1 and 2.8 AU.  相似文献   

10.
A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from 3–110 MeV and the energy spectra and elemental composition of all cosmic-ray nuclei from hydrogen through iron over an energy range from 1–500 MeV/nuc. Isotopes of hydrogen through sulfur will be resolved from 2–75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.Principal Investigator of the Voyager Cosmic Ray Experiment.  相似文献   

11.
As an application of our extensive calculations of energies and intensities of atomic lines in very intense magnetic fields of the order of 1011-1013 G we discuss the possibility of observing magnetically strongly shifted iron lines in the spectra of pulsating X-ray sources. Careful estimates of the relevant parameters lead us to the conclusion that it would be profitable to look for magnetically shifted iron line enission in magnetic neutron stars of low luminosity using spectrometers working in the energy range 10 – 100 keV with sensitivities of 10–4 cm–2 s–1 and energy resolutions E/E 10 – 100.This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG).  相似文献   

12.
The X-ray properties of the supernova remnant G 29.7-0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index =-0.77, hydrogen column density on the line of sight NH=2.3.1022 cm–2. The incident X-ray flux from the source is (3.6±0.1) 1011 erg cm–2 s–1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2. 1036 erg s–1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus constraining the hydrogen column density to be NH=(3.3 ±0.3) 1022 cm–2 and the energy spectral index =1.0±0.15. This new observation is consistent with emission by a synchroton nebula presumably fed by an active pulsar. An upper limit of 1.5% for the pulsed fraction in the range of periods 32ms to 104 s has been obtained.  相似文献   

13.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   

14.
Small scale structure in local interstellar matter (LISM) is considered. Overall morphology of the local cloud complex is inferred from Ca II absorption lines and observations of H I in white dwarf stars. Clouds with column densities ranging from 2–100 × 1017 cm–2 are found within 20 pc of the Sun. Cold (50 K) dense (105 cm–3) small (5–10 au) clouds could be embedded and currently undetected in the upwind gas. The Sun appears to be embedded in a filament of gas with thickness 0.7 pc, and cross-wise column density 2 × 1017 cm–2. The local magnetic field direction is parallel to the filament, suggesting that the physical process causing the filamentation is MHD related. Enhanced abundances of refractory elements and LISM kinematics indicate outflowing gas from the Scorpius-Centaurus Association. The local flow vector and Sco data are consistent with a 4,000,000 year old superbubble shell at –22 km s–1, which is a shock front passing through preshock gas at –12 km s–1, and yielding cooled postshock gas at –26 km s–1in the upwind direction. A preshock magnetic field strength of 1.6 G, and postshock field strength of 5.2 G embedded in the superbubble shell, are consistent with the data.Abbreviations LISM Local ISM - SIC Surrounding Interstellar Cloud - LIC Local Interstellar Cloud  相似文献   

15.
The containment lifetime of the cosmic radiation is a crucial parameter in the investigation of the cosmic-ray origin and plays an important role in the dynamics of the Galaxy. The separation of the cosmic-ray Be isotopes achieved by two satellite experiments is considered in this paper, and from the measured isotopic ratio between the radioactive 10Be (half-life = 1.5 × 106 yr) and the stable 9Be, it is deduced that the cosmic rays propagate through matter with an average density of 0.24 ± 0.07 atoms cm-3, lower than the traditionally quoted average density in the galactic disk of 1 atom cm-3. This paper reviews the implications of this result for the cosmic-ray age mainly in the context of two models of confinement and propagation: the homogeneous model, normally identified with confinement to the galactic gaseous disk, and a diffusion model in which the cosmic rays extend into a galactic halo. The propagation calculations use:
  1. a newly deduced cosmic-ray pathlength distribution.
  2. a self-consistent model of solar modulation.
  3. an up-to-date set of fragmentation cross sections.
The satellite results and their implications are compared with the information on the cosmic-ray age derived from other cosmic-ray radioactive nuclei and the measured differential energy spectrum of high-energy electrons. It is a major conclusion of this paper that in a homogeneous model the cosmic-ray age is 15(+7, -4) million years, i.e., about a factor 4 longer than early estimates based on the abundances of the light nuclei Li, Be, and B and a nominal interstellar density of 1 atom cm -3. The lifetime is even longer when the satellite results are applied to a diffusion halo model. The deduced traversed matter density, together with other astrophysical considerations, suggest the population of a galactic halo by the cosmic rays.  相似文献   

16.
The cosmic ray isotopic composition measurements from the High Energy Telescope (HET) on the Ulysses spacecraft are reviewed. The source isotopic composition of key elements is found to be surprisingly like the Solar system abundances with the notable exception of 22Ne. The average density of interstellar material cosmic rays traverse is found to be 0.25 atom cm–3, corresponding to a confinement time of 20 Myr. Vanadium isotopic abundances are shown to be consistent with weak cosmic-ray reacceleration. The implications of these measurements are discussed.  相似文献   

17.
Priedhorsky  W. 《Space Science Reviews》1985,40(1-2):305-311
We present long-term (1969–1979) observations of Cygnus X-3, obtained by the Vela 5B satellite. The 3–12 keV light curve has 10 day time resolution. Cyg X-3 is a peculiar high-luminosity X-ray source, radiating from the radio region to hard gamma rays of more than 1016 eV. It has a 4.8 hour period, probably orbital, which is not resolved by our present analysis. Long term periodicities of 17, 20, and 33–34 days have been reported by several authors, and explained as the effects of apsidal motion, precession, or an eccentric orbit. We do not observe the 17 and 33–34 day variations, and set upper limits significantly lower than the reported amplitude of the 33–34 day variation. There is weak evidence for a 20 day flux variation. The light curve shows high and low states which alternate with a characteristic timescale of 1 year. There is no counterpart, at this time resolution, of the giant radio outburst of 1972 September.  相似文献   

18.
The COMPTEL telescope aboard the Compton Gamma Ray Observatory has put MeV -rays into the midst of astronomy. Among recent highlights are the discovery of intense MeV emission from blazar-type active galactic nuclei, the surprising non-detection of any Seyfert galaxy at MeV energies, the first image of the Milky Way in the light of the26Al line at 1.809 MeV (possibly including a detection of the Vela supernova remnant), the discovery of 3–7 MeV emission from the Orion complex, which can be identified with nuclear interaction lines of12C and16O at 4.44 and 6.13 MeV, the detection of the44Ti line at 1.15 MeV from the supernova remnant Cas A, and the first results on the spectrum and propagation of low-energy (1–100 MeV) cosmic-ray electrons.also Leiden Observatory  相似文献   

19.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

20.
The fundamental properties of 24 Galactic WN stars are determined from analyses of their optical, UV and IR spectra using sophisticated model atmosphere codes (Hillier, 1987, 1990). Terminal velocities, stellar luminosities, temperatures, mass loss rates and abundances of hydrogen, helium, carbon, nitrogen and oxygen are determined. Stellar parameters are derived using diagnostic lines and interstellar reddenings found from fitting theoretical continua to observed energy distributions.Our results confirm that the parameters of WN stars span a large range in temperature (T*=30–90,000 K), luminosity (log L*/L=4.8–5.9), mass loss (M=0.9–12×10–5 M yr–1) and terminal velocity (v =630–3300 km s–1). Hydrogen abundances are determined, and found to be low in WNEw and WNEs stars (<15% by mass) and considerable in most WNL stars (1–50%). Metal abundances are also determined with the nitrogen content found to lie in the range N/He=1–5×10–3 (by number) for all subtypes, and C/N 0.02 in broad agreement with the predictions of Maeder (1991). Enhanced O/N and O/C is found for HD 104994 (WN3p) suggesting a peculiar evolutionary history. Our results suggest that single WNL+abs stars may represent an evolutionary stage immediately after the Of phase. Since some WNE stars exist with non-negligible hydrogen contents (e.g. WR136) evolution may proceed directly from WNL+abs to WNE in some cases, circumventing the luminous blue variable (LBV) or red supergiant (RSG) stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号