首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that the modifier molecules can be easily adsorbed by the sepiolite, but the layer space (d001 of the sepiolite, linked by means of covalent bond, remains unchanged. A proper method to solve this problem appears to exert large shearing force on the original sepiolite followed by its organic modification (OSEP2). The morphology observation shows that there are formed an even dispersion of nano-sized OSEP2 fibers in epoxy resin and a structure intercalated by epoxy molecules, which lead to significantly improved mechanical properties. Impact strength of the epoxy/OSEP2 nanocomposite increases from 32.1 kJ/m^2 to 44.4 kJ/m^2, 38.3% higher than that of pristine matrix with 3 wt% OSEP2 content. It is also noted that the flexural strength of the OSEP/epoxy composites has risen by about 3% higher than that of the pure epoxy resin.  相似文献   

2.
采用十二胺盐处理的蒙脱土(MMTDDA)和环氧(E-51)/4,4′二胺基二苯砜(DDS)体系为研究对象,分别通过普通搅拌(磁力搅拌)和高速剪切分散(高速乳化均质机)两种分散MMTDDA的工艺制备了环氧树脂MMTDDA纳米复合材料。透射电镜(TEM)观察表明,普通搅拌分散法制备的纳米复合材料中存在较多粘土团聚体,而通过高速剪切分散施加一定外部剪切力细化分散粘土团聚体,则有利于粘土片层在固化过程中充分解离,力学性能明显提高。在一定剪切速率下,力学性能随剪切分散时间的增加而增加;当粘土含量为3wt%时,冲击强度可由32.1kJ/m2提高到43.9kJ/m2,提高近36.8%,弯曲强度也有一定提高。动态热机械性能(DMA)分析表明,环氧树脂/MMTDDA纳米复合材料的储能模量在玻璃态没有明显改善,但在玻璃化转变区具有一定的提高;玻璃化转变温度(Tg)和损耗模量都得到不同程度的提高,Tg由纯环氧树脂的209.6℃提高到环氧树脂/MMTDDA(3wt%)纳米复合材料的214.9℃,提高近5.3℃,且粘土片层的分散解离效果越好,提高的幅度越大。  相似文献   

3.
对粘土片层在纳米粘土/高性能环氧树脂体系中的分散状态及力学性能进行了研究。通过加入较少的粘土(含量≤5wt%)得到插层型纳米复合材料。纳米粘土的存在使环氧树脂的玻璃化转变温度有所降低。粘土质量含量为2%时,复合材料的冲击强度约上升10%,但超过2%后。冲击强度随之下降。材料的弯曲强度则随着粘土含量的升高而逐步降低。  相似文献   

4.
双马来酰亚胺改性酚醛型环氧树脂性能研究   总被引:1,自引:0,他引:1  
采用双马来酰亚胺(BMI)改性酚醛型环氧树脂(F-51)/芳香胺(DAMI)固化体系。采用DSC,TGA和TMA等仪器考察BMI含量对改性体系的固化行为、力学性能及热稳定性的影响,并用扫描电镜(SEM)研究材料断面的形态结构。结果表明,随着体系中BMI比例的增加,体系固化放热峰向高温区移动,总反应热减小,BMI的加入可以提高材料的力学性能和热稳定性,改性后材料断裂面的形态呈现韧性断裂特征。  相似文献   

5.
以碳纤维为增强体,聚碳硅烷和聚烷基铪为前驱体,采用前驱体浸渍裂解(PIP)工艺制备C/Si C-HfC复合材料,将其与同种工艺所得C/SiC复合材料进行对比评价分析。发现C/SiC-HfC复合材料具有较低密度和较好的高温力学性能,且在1 650℃静态氧化实验中,含有HfC的基体对纤维具有更佳保护效果。C/SiC-HfC密度约为1.92 g/cm~3,常温弯曲强度为345 MPa,1 800℃高温无氧环境弯曲强度可达424 MPa。C/SiC-HfC复合材料表现出更加优异高温力学性能是由于HfC组分的添加抑制了SiC晶粒的生长,降低了基体内部较大裂纹产生的概率。在1 650℃空气环境下,含有HfC的基体对纤维具有更佳保护作用,主要是由于HfC组分的添加使材料表面的SiC及时氧化成SiO_2,SiO_2在纤维和基体表面形成包覆层,防止了材料内部的进一步氧化。  相似文献   

6.
综述了高分子纳米复合材料的发展研究现状,将高分子纳米复合材料的制备方法分为四大类:纳米单元与高分子直接共混(内含纳米单元的制备及其表面改性方法);在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。介绍了高分子纳米复合材料的表征技术及其应用前景。  相似文献   

7.
610 阻燃环氧树脂及复合材料性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用热熔法预浸工艺制备出一种玻璃纤维增强环氧树脂预浸料。通过DSC、动态黏度及TG对树脂的反应性和储存性及阻燃机理进行分析;同时采用热压罐成型工艺制备复合材料并对力学性能和阻燃性能进行评价。结果表明:树脂的起始反应温度为129℃,室温下储存期大于30 d,预浸料具有较好的铺覆性,复合材料具有良好的力学性能及优异的阻燃性能。  相似文献   

8.
碳/环氧复合材料孔隙问题研究进展   总被引:2,自引:1,他引:2       下载免费PDF全文
对碳/环氧复合材料热压罐成型工艺中孔隙形成机理、孔隙率对复合材料力学性能的影响以及孔隙率检测方法的研究进行了总结和评述,并提出孔隙率的工艺控制方法及未来研究方向。  相似文献   

9.
研究了甲基四氢邻苯二甲酸酐(Me THPA)和4,4-二氨基二苯基砜(DDS)两种固化剂对1,1,2,2,-四(对羟基苯基)乙烷四缩水甘油醚环氧树脂(TGE)固化反应及固化性能的影响。通过DSC研究了树脂的固化行为,结果表明Me THPA体系与DDS体系的固化反应活化能分别为65.8和68.4 k J/mol;同时通过DMA、TGA以及万能材料试验机等方法对树脂的热力学和力学性能等进行研究。Me THPA体系的Tg为188℃,初始热分解温度为219.9℃,拉伸强度为33 MPa,弯曲强度为48 MPa。而DDS体系的Tg为203℃,初始分解温度为292.3℃,拉伸与弯曲强度分别为61和93 MPa。  相似文献   

10.
为制备出导电性能优良的有机透明导电涂层,需要把具有导电性的碳纳米管在树脂中组装成一体化导电结构网络.本文运用可以在树脂中自组装的导电聚乙撑二氧噻吩来实现碳纳米管自组装的方法,合成出了导电聚乙撑二氧噻吩纳米薄膜均匀覆盖的导电聚乙撑二氧噻吩/碳纳米管复合物,并运用透射电镜(TEM)、傅立叶红外光谱(FTIR)和四探针法对其进行了分析与表征,结果发现在碳纳米管含量为1%时,纳米复合物的导电率可达到100S/cm,而碳纳米管和聚乙撑二氧噻吩的导电率分别为10.4 S/cm和14.3S/cm.  相似文献   

11.
以 KNG-CZ030石墨烯(graphene nanoplatelets,GNPs)为导电填料,环氧树脂(E-54)为聚合物基体,2-乙基-4甲基咪唑(2,4-EMI)为固化剂,采用溶液混合和超声分散的方法制备导电复合材料。通过添加无机粒子(NaCl, TiO2),研究了无机粒子对石墨烯微片分散均匀性的影响以及对 GNPs /E-54复合材料导电性能的影响。实验结果表明:加入 NaCl 和 TiO2提高了石墨烯微片在基体中的分散性,降低了复合材料室温体积电阻率,即提高了导电性能;NaCl /GNPs /E-54和 TiO2/GNPs /E-54复合材料室温体积电阻率为106Ω·m 时,石墨烯质量分数分别为0.75%和0.73%,与未添加无机粒子的 GNPs /E-54复合材料质量分数0.97%相比有所降低。  相似文献   

12.
实验研究了填充炭黑的环氧树脂基导电复合材料的导电机理,不同炭黑掺量复合材料在一次加载及反复加载卸载下的力电效应。结果表明,炭黑掺量为20%试件的力电效应明显且稳定;各掺量试件卸载后均存在较大残余电阻,经多次加载卸载后,电阻变化率逐渐减小并趋于稳定值;卸载后电阻恢复率不断增加,最终可完全恢复。  相似文献   

13.
石墨/环氧卫星天线支撑结构研制与质量控制   总被引:2,自引:0,他引:2  
介绍了通信卫星天线系统石墨/环氧支撑结构包括石墨/环氧薄壁梁,接头和玻璃纤维/环氧耳片等的研制技术,构件的胶接组装技术与结构的质量控制。该研制成果已多次应用于实际产品中,取得令人满意的结果。  相似文献   

14.
聚合物/纳米复合材料的制备、性能及其应用展望   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了纳米粒子的表面效应、小尺寸效应、量子尺寸效应等特性,聚合物/纳米复合材料的概念和结构性能;综述了聚合物/纳米复合材料的几种常用制备方法;总结了由于纳米粒子的存在聚合物/纳米复合材料在力学、光、电、磁等方面呈现出常规材料不具备的特性,并结合其特性展望了聚合物/纳米复合材料的应用前景。  相似文献   

15.
双酚A型环氧树脂紫外光固化工艺及其力学性能   总被引:1,自引:1,他引:0  
刘博  李勇  肖军  陈云雷  肖健 《航空学报》2014,35(5):1424-1432
为了推进紫外光固化技术在环氧树脂及其复合材料制备中的应用,以双酚A型环氧树脂E51为基体,采用自行研制的紫外光设备固化,利用红外光谱法测定固化后树脂的固化度,研究了树脂体系中光引发剂和稀释剂含量对树脂固化速率的影响以及环氧树脂的紫外光固化特性,获得的树脂体系的最优配方为:双酚A型环氧树脂E51:活性稀释剂660A:光引发剂1176=100:10:5(质量比),并对紫外光固化树脂浇铸体的力学性能进行了测试,其拉伸强度和模量分别可达到32.34 MPa和1.80 GPa,弯曲强度和模量分别为60.64 MPa和1.73 GPa。结果表明,紫外光固化速率随树脂体系中光引发剂含量的增加而上升,随活性稀释剂含量的增加先上升后下降;与传统热固化相比,紫外光固化不仅可以大幅度缩短树脂体系的固化时间,同时,制得的树脂浇铸体具有良好的综合力学性能。研究结果对紫外光固化技术在实际生产中的应用具有重要意义。  相似文献   

16.
三维编织碳/环氧复合材料成型工艺   总被引:3,自引:0,他引:3  
从树脂体系的选择和优化、RTM工艺以及材料内部微观结构分析等方面对三维编织碳/环氧复合材料成型工艺进行了系统的研究。结果表明,在该材料的成型技术中,以TDE-85/DDS/BF3·EMA树脂为基体,同时采用RTM工艺的成型方法是合理可行的,该材料适合用在承力情况复杂的制件上。  相似文献   

17.
分别对碳/环氧复合材料进行钻孔和冲击,并测量了钻孔或冲击前后复合材料的电阻,分析了材料电阻变化的机理,建立了复合材料电阻变化计算模型。结果表明,钻孔与冲击都会使复合材料中碳纤维之间接触点(电流截面积)及电荷传导路线发生变化,从而引起复合材料电阻变化。由钻孔对复合材料电阻影响的计算模型推导的冲击计算模型,能够极大地简化有关冲击对复合材料的影响的计算。根据本文所建立的计算模型可以计算出钻孔与冲击引起的复合材料电阻变化率,且与实验测量值相吻合。  相似文献   

18.
芳基硫醇在CF/Epoxy复合材料界面上的自组装研究   总被引:1,自引:0,他引:1  
提出了一种新的碳纤维表面改性方法--分子自组装,即在表面金属化的碳纤维上进行有机分子的自组装.表面增强拉曼散射光谱(SERS)分析证实了末端官能团不同的芳基硫醇化学吸附在银的表面,并形成了平躺取向和倾斜取向的自组装膜结构.X-射线光电子能谱(XPS)测试进一步证实了两种自组装膜通过S原子和Ag形成共价键吸附在碳纤维表面.表面经组装改性后的碳纤维和环氧复合后界面粘结强度得到了不同程度的提高,揭示了界面区域膜结构和性能的关系.  相似文献   

19.
合成了新型环氧树脂潜伏性促进剂三(乙酰乙酸十八酯)铝,采用DSC,FT-IR,H-NMR、元素分析分别对其热分解机理、化学结构、物质纯度进行了表征.研究了以环氧ZH92-21∶双酚S∶三(乙酰乙酸十八酯)铝=l00∶3∶0.5为配比的树脂体系的固化制度、潜伏性和力学性能,树脂体系的表观粘度在室温储藏7个月后基本没有变化,相分离是其具有优异潜伏性的主要原因.  相似文献   

20.
基于“离位”增韧技术,将“离位”增韧剂聚醚砜(PES)均匀地附载在碳纤维织物上,采用RTM 工 艺制备了Cf / BMI 复合材料(U3160/6421),通过低速冲击、DMA、SEM 和基本力学性能测试分析,研究了PES 对U3160/6421 复合材料性能的影响。结果表明,采用PES 附载的ES-Fabric 织物制备的复合材料具有良好的 增韧效果,其CAI 值提高了85%。由于PES 的加入,在复合材料层间出现了PES 和树脂BMI6421 的相反转结 构,改善了复合材料的损伤阻抗,提高了复合材料的损伤容限,并且“离位”层间增韧对复合材料的力学性能影 响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号