首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
《中国航空学报》2016,(2):297-304
Compressible starting flow at small angle of attack(Ao A) involves small amplitude waves and time-dependent lift coefficient and has been extensively studied before. In this paper we consider hypersonic starting flow of a two-dimensional flat wing or airfoil at large angle of attack involving strong shock waves. The flow field in some typical regions near the wing is solved analytically. Simple expressions of time-dependent lift evolutions at the initial and final stages are given. Numerical simulations by compuational fluid dynamics are used to verify and complement the theoretical results. It is shown that below the wing there is a straight oblique shock(OSW) wave,a curved shock wave(CSW) and an unsteady horizontal shock wave(USW), and the latter moves perpendicularlly to the wing. The length of these three parts of waves changes with time. The pressure above OSW is larger than that above USW, while across CSW there is a significant drop of the pressure, making the force nearly constant during the initial period of time. When, however, the Mach number is very large, the force coefficient tends to a time-independent constant, proportional to the square of the sine of the angle of attack.  相似文献   

2.
Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently, a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.  相似文献   

3.
A type of flow unsteadiness with low frequencies and large amplitude was investigated experimentally for vortex wakes around an ogive-tangent cylinder. The experiments were carried out at angles of attack of 60–80 and subcritical Reynolds numbers of 0.6–1.8×105. The reduced frequencies of the unsteadiness are between 0.038 and 0.072, much less than the frequency of Karman vortex shedding. The unsteady flow induces large fluctuations of sectional side forces. The results of pressure measurements and particle image velocimetry indicate that the flow unsteadiness comes from periodic oscillation of the vortex wakes over the slender body. The time-averaged vortex patterns over the slender body are asymmetric, whose orientation is dependent on azimuthal locations of tip perturbations. Therefore, the vortex oscillation is a type of unsteady oscillation around a time-averaged asymmetric vortex structure.  相似文献   

4.
Accurate aerodynamic models are the basis of flight simulation and control law design.Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism.Support vector machines(SVMs)based on statistical learning theory provide a novel tool for nonlinear system modeling.The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field.Mainly,after a review of SVMs,several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail,such as selection of input variables,selection of output variables and determination of SVM parameters.The least squares SVM(LS-SVM)models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration,and then used to predict the aerodynamic responses in other tests.The predictions are in good agreement with the test data,which indicates the satisfying learning and generalization performance of LS-SVMs.  相似文献   

5.
对弹射救生系统的气动特性进行了分析,发展了一套快速获取其气动特性的工程计算方法,并对某战斗机弹射救生系统的大迎角大侧滑角气动力特性进行了计算.结果表明,工程计算结果与风洞试验数据一致性良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号