首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hardware-in-the-loop(HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting signal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory(DRFM) system,the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile(HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.  相似文献   

2.
3.
为估算运载火箭的RCS(Radar Cross Section,雷达散射截面积),采用部件分解法对运载火箭进行电磁散射几何建模,根据飞行过程中运载火箭和雷达的几何关系建立雷达照射目标视线角的计算模型,并运用高频散射理论提出运载火箭RCS的仿真计算方法;最后,对运载火箭的静态RCS和动态RCS进行仿真计算与分析.结果表明:对运载火箭电磁散射几何建模合理可行,提出的火箭RCS计算方法可以满足工程应用需要.采用该方法仅修改几何建模中的模型结构和部分尺寸参数即可方便计算不同型号运载火箭的RCS特性,可以为航天测控雷达系统设计和布站优化提供依据.  相似文献   

4.
We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The state-of-the-art in radar target recognition is based mostly either on the use of single polarimetric pairs or on the four preset pairs of orthogonal polarimetric signatures. Due to these limitations, polarimetric radar processing has been fruitful only in the area of noise suppression and target detection. The use of target separability criteria for the optimal selection of radar signal state of polarizations is addressed here. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarization states (arbitrary polarization inclination angles and ellipticity angles). Then, an optimization criterion that minimizes the within-class distance and maximizes the between-class metrics is used for the derivation of optimum sets of polarimetric states. The results of the application of this approach on real synthetic aperture radar (SAR) data of military vehicles are obtained. The results show that noticeable improvements in target separability and consequently target classification can be achieved by the use of the optimum over nonoptimum signatures  相似文献   

5.
The radar transmission equation for a harmonic radar operating over a planar, finite dielectric Earth through foliage is derived for an interesting class of nonlinear scatterers. The received power can typically depend on range to the (-14) power for small objects near the ground. The maximum detection range of a ground-based system is related to all major system parameters: it is most sensitive to polarization, transmit antenna height, and transmit wavelength; moderately sensitive to transmit power and transmit antenna area; and least sensitive to receive antenna area, harmonic scattering cross section, and mode of data processing. For example, there is seen to be a best apportionment of total available aperture area into disjoint transmit and receive apertures which can be well approximated by the equal gain condition. Also, there is seen to be a critical path distance through foliage; at distances less than this, small wavelengths are desirable and, conversely, the upper transmit frequency limit may be set by nonlinear scatterer response. Airborne synthetic aperture radar systems are discussed and quantification of harmonic noise and effects of scatterer fluctuation are made. A useful phenomenological model of a nonlinear scatterer is given that is consistent with some observations and predicts a frequency dependence. Nonlinear scatterer effects on range resolution are discussed.  相似文献   

6.
The characteristics and target identification potential of a representation of the information from two polarization-diverse measurements of the radar backscatter of an unknown target are considered. The locus of these two polarization-diverse waveforms, termed the transient polarization response (TPR), has been shown to be closely related to the geometry of the scattering centers of the target. The polarization-related components of features derived from the TPR concur well with the shape and orientation of the major scattering centers distributed in the downrange profile of the object. This illustrates the intuitively appealing result that the polarization of the backscatter, as represented by the TPR and mapped onto the modified polarization chart, is determined by target geometry. It is shown that both polarization-related and amplitude-related features derived from the TPR are useful for target identification. By using distance measures that depend on various components, the elliptical parametrization information alone is sufficient to allow satisfactory target identification at SNRs of 0 dB and above. The significance of this result is that the absolute amplitudes of the received horizontally polarized and vertically polarized channels need not be known. However, if amplitude information is known, target identification percentages improve  相似文献   

7.
High resolution 3D “snapshot” ISAR imaging and featureextraction   总被引:1,自引:0,他引:1  
We have developed a new formulation for three dimensional (3D) radar imaging of inverse synthetic aperture radar (ISAR) data based on recent developments in high resolution spectral estimation theory. Typically for non real-time applications, image formation is a two step process consisting of motion determination and image generation. The technique presented focuses on this latter process, and assumes the motion of the target is known. The new technique offers several advantages over conventional techniques which are based on the correlation imaging function. In particular, the technique provides for a direct 3D estimate (versus back projection to a 3D target grid matrix) of the locations of the dominant scattering centers using only a minimum set of independent 2D range-Doppler ISAR “snapshots” of the target. Because of the snapshot nature of the technique, it is particularly applicable to 3D imaging of sectors of sparse-angle data, for which the sidelobes of the correlation imaging integral become high. Furthermore, the technique provides for an estimate of amplitude and phase of each scattering center as a function of aspect angle to the target, for those aspect angles which encompass the set of 2D range-Doppler snapshots. Results illustrating the technique developed are presented for both simulated and static range data  相似文献   

8.
A statistical approach to modeling and simulation of polarimetric electromagnetic fields backscattered from a reflecting body of a complex shape is described. A statistical scattering matrix is formulated and estimated for Rayleigh and Rician fluctuating (reciprocal and nonreciprocal) targets. The backscattered and received fields are modeled as a stochastic processes for arbitrary combination of transmit and receive polarization. A Monte Carlo simulation of a tank target is performed to verify the assumptions and approximations made and to demonstrate the feasibility of the real-time model. The results presented can be generalized to polarimetric clutter and to decoy modeling and simulation  相似文献   

9.
In the work presented here, we address parameter optimization for agile beam radar tracking to minimize the radar resources that are required to maintain a target under track. The parameters to be optimized include the track-revisit interval as well as the sequence of pairs of target signal strengths and detection thresholds associated with successive illumination attempts in each track-revisit. The effects of false alarms and clutter interference are taken into account in the modeling of target detection and in the characterization of tracking performance. Based on the detection model and tracker characterization, the parameter optimization problem is formulated. Typical examples of the optimization problem are numerically solved. The optimal solution gives an off-line scheduling of the parameter set. It also provides insight into the selection of a near-optimal parameter set that is appropriate for real-time implementation.  相似文献   

10.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

11.
Taking into account the limitations of existing stealth performance analysis methods, a method termed as the integrated stealth performance analysis method is proposed for evaluating the stealth ability of the penetration aircraft. Based on various target radar cross section (RCS) scattering characters, this article integrates the relevant parameters needed for building up target circumferential RCS scattering model and proposes the RCS scattering controlling parameters to control the changing trends of the relevant model RCS scattering characters. According to the radar dynamic detecting characters during the whole penetration course, a dynamic stealth performance evaluating model is proposed accompanied by a series of stealth ability estimation rules. This new analysis method can enhance the integrality and dependability of the stealth analysis conclusions and summarize the relationship between the target RCS scattering characters and their effects on stealth performance. The rules indicated by this relationship can be used as the reference for designing new type of stealth aircraft and setting up specific penetration tactics.  相似文献   

12.
A High-Resolution Radar Detection Strategy   总被引:5,自引:0,他引:5  
A comparison of single range cell detection and integrated contiguous range cell detection for a high range resolution radar is presented. A simulation was used to generate probability of detection curves for the two detection strategies using 10 target models with different target scattering characteristics. The integrated range cell detection strategy was found to be superior in all cases except when the target is composed of a single strong flare point.  相似文献   

13.
We propose a model for generating low-frequency synthetic aperture radar (SAR) clutter that relates model parameters to physical characteristics of the scene. The model includes both distributed scattering and large-amplitude discrete clutter responses. The model also incorporates the SAR imaging process, which introduces correlation among image pixels. The model may be used to generate synthetic clutter for a range of environmental operating conditions for use in target detection performance evaluation of the radar and automatic target detection/recognition algorithms. We derive a statistical representation of the proposed clutter model's pixel amplitudes and compare with measured data from the CARABAS-II SAR. Simulated clutter images capture the structure and amplitude responses seen in the measured data. A statistical analysis shows an order of magnitude improvement in model fit error compared with standard maximum-likelihood (ML) density fitting methods.  相似文献   

14.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

15.
Time-varying autoregressive modeling of HRR radar signatures   总被引:1,自引:0,他引:1  
A time-varying autoregressive (TVAR) model is used for the modeling and classification of high range resolution (HRR) radar signatures. In this approach, the TVAR coefficients are expanded by a low-order discrete Fourier transform (DFT). A least-squares (LS) estimator of the TVAR model parameters is presented, and the maximum likelihood (ML) approach for determining the model order is also presented. The validity of the TVAR modeling approach is demonstrated by comparing with other approaches in estimating time-varying spectra of synthetic signals. The estimated TVAR model parameters are also used as features in classifying HRR radar signatures with a neural network. In the experiment with two sets of noncooperating target identification (NCTI) data, about 93% of samples are correctly classified  相似文献   

16.
A digital simulation of coherent synthetic aperture radar (SAR) images of three-dimensional objects is described. The simulation is intended to produce representative SAR images that would be suitable for image analysis and pattern recognition studies. The procedure involves a modeling of the object using a combination of three-dimensional quadratic shapes yielding a smooth surface representation. The radar images of these models are then computed using physical optics scattering theory. Finite resolution both in range and cross-range direction is incorporated via a theoretical analysis which results in a simple Fourier transform representation of an equivalent "offset" window filter. Examples of the computer simulation for both infinite resolution and blurred or finite resolution are given for a KC-135 aircraft model.  相似文献   

17.
针对弹道中段目标微特征难以识别与分辨的问题,提出了一种基于低分辨雷达和高分辨雷达相结合的混合体制雷达网的有翼弹道目标微特征及外形参数提取方法。依据非线性信号参量可分离模型,利用非线性最小二乘估计方法解算出有翼弹道目标群各散射中心的幅相参数,结合不同雷达提取的微特征的关联性,利用散射中心关联处理实现了各类散射中心的分离。在此基础上,利用弹道目标的微特征,结合弹道目标各散射中心的相对位置关系,重构出各目标的三维微特征及各散射中心的三维位置矢量,进而估计出目标的进动特征和结构参数。仿真结果表明:当信噪比(SNR)为5 dB时,该方法的重构精度保持在92%左右。  相似文献   

18.
Radar Properties of Non-Rayleigh Sea Clutter   总被引:1,自引:0,他引:1  
Measurements of sea clutter at low grazing angles using high- resolution radar show that the probability density p(x) of envelope detected sea clutter is not Rayleigh. Using the composite surface scattering model, a special varying clutter density p(x|?0) is proposed and is used to explain the non-Rayleigh nature of clutter. Since the clutter distribution has an enormous effect on the performance of a radar, the variation of the clutter densities, p(x) and p(x|?0), with various radar parameters such as frequency, pulsewidth, and polarization is found. Finally, a simulation of the composite surface scattering model is performed, and it verifies the effect of the various parameters on p(x).  相似文献   

19.
The authors assess the state of the art, focusing on their own contributions. Covered areas are the electromagnetic inverse problem in radar polarimetry, coherent polarization radar theory, partially coherent polarization radar theory, vector (polarization) inverse scattering approaches, the polarimetric matched filter approach, polarimetric Doppler radar applications in meteorology and oceanography, and image fidelity in microwave vector diffraction tomographic imaging  相似文献   

20.
A model of a distributed target as a collection of independent, Poisson distributed point scatterers or scattering centers in a range-velocity target space is introduced and is characterized by a deterministic function called the ?scatterer density function.? This function is the density of the point scatterers in the range-velocity space and can be estimated in a relatively straightforward manner by any radar having adequate resolution in both range and velocity and no ambiguities in the region occupied by the distributed target. The use of the random signal radar with a correlator receiver is considered here and the statistical properties of the correlator output, when the return signal is from a distributed target, are derived. It is shown that the spectral density is simply related to the scatterer density function. The technique is illustrated by an example in which the target is a tornado modeled as a cylinder with constant angular velocity. The example suggests that is a possible to remotely estimate the radar cross section per unit volume as a function of distance from the center of the tornado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号