共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the evolution of magnetic field and relationship with the magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained at Huairou Solar Observing Station near Beijing, and also longitudinal magnetograms by MDI of SOHO, white light and 171 Å images by TRACE and soft X-ray images by Yohkoh.The conclusions in the analysis of the formation process of complex and delta magnetic configuration in some super active regions are the following: (1) The magnetic shear and gradient provide the non-potentiality of the magnetic field of active regions reflecting the existence of electric current. (2) Some of large-scale delta active regions could be due to the emergence of highly sheared non-potential magnetic flux bundles from the subatmosphere with amount of magnetic helicity, in addition to the emergence of twisted magnetic ropes. (3) We also present some results on the study of the magnetic (current) helicity in solar active regions. 相似文献
2.
The generation of solar non-axisymmetric magnetic fields is studied based on a linear α 2–Ω dynamo model in a rotating spherical frame. The model consists of a solar-like differential rotation, a magnetic diffusivity varied with depth, and three types of α-effects with different locations, i.e. the tachocline, the whole convective zone and the sub-surface. Some comparisons of the critical α-values of axisymmetric ( m = 0) and longitude-dependent modes ( m = 1,2,3) are presented to show the roles of the magnetic diffusivity in the problem of modes selection. With the changing of diffusivity intensity for the given solar differential rotation system, the dominant mode possibly changes likewise and the stronger the diffusivity is, the easier the non-axisymmetric modes are excited. The influence of the diffusivity and differential rotation on the configurations of the dominant modes are also presented. 相似文献
3.
We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad–Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube. 相似文献
4.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths ( δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣ Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣ Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation. 相似文献
5.
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
6.
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as . This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares. 相似文献
7.
We have performed the analysis of the magnetic topology of active region NOAA 10486 before two large flares occurring on October 26 and 28, 2003. The 3D extrapolation of the photospheric magnetic field shows the existence of magnetic null points when using two different methods. We use TRACE 1600 Å and 195 Å brightenings as tracers of the energy release due to magnetic reconnections. We conclude on the three following points: - 1. The small events observed before the flares are related to low lying null points. They are long lasting and associated with low energy release. They are not triggering the large flares.
2. On October 26, a high altitude null point is found. We look for bright patches that could correspond to the signatures of coronal reconnection at the null point in TRACE 1600 Å images. However, such bright patches are not observed before the main flare, they are only observed after it. 3. On October 28, four ribbons are observed in TRACE images before the X17 flare. We interpret them as due to a magnetic breakout reconnection in a quadrupolar configuration. There is no magnetic null point related to these four ribbons, and this reconnection rather occurs at quasi-separatrix layers (QSLs).
We conclude that the existence of a null point in the corona is neither a sufficient nor a necessary condition to give rise to large flares. 相似文献
8.
A two-dimensional dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the changes of the Earth's ozone layer occurred during the 21st and 22nd solar cycles. The calculated global total ozone changes in the latitude range 60°S—60°N caused by 11-year variation of solar UV radiation, volcanic eruptions, and anthropogenic atmospheric pollution containing CO 2, CH 4, N 2O and chlorine and bromine species are in a rather good agreement with the observed global ozone trend. The calculations show that the anthropogenic pollution of the atmosphere is a main reason of the ozone depletion observed during the last two solar cycles. However, the 11-year solar UV variation as well as volcanic eruptions of El Chichon and Mt. Pinatubo also gave a significant contribution to the observed global ozone changes. 相似文献
9.
We first briefly review the current trend in the studies of coronal mass ejections (CMEs), then summarize some recent efforts in understanding the CME initiation. Emphasis has been put on the studies of Earth-directed CMEs whose associated surface activity and large scale magnetic source have been well identified. The data analysis by combining the MDI full disc magnetograms, vector magnetograms of active regions, EUV waves and dimmings, non-thermal radio sources, and the SOHO LASCO observations has shed new light in understanding the CME magnetism. However, the current studies seem to invoke new observations in a few aspects: (1) The observations which enable us to trace CMEs from the earliest associated surface activity to its initial acceleration and key development in the low corona in the height of 1–3 R; (2) The imaging spectroscopic observations which can be used to diagnose the early plasma outflow and the line-of-sight velocity in understanding the kinematics of CMEs; (3) The accurate timing from primary magnetic energy release, manifested by chromospheric activity, non-thermal radio bursts, and EUV, X-ray and γ-ray emissions, to the CME initiation, early acceleration and propagation, and the consequences in the interplanetary space and magnetosphere. The Kuafu Mission will meet the basic requirement for the new observations in CME initiation studies and serve as a monitor of space weather of the Sun–Earth system. 相似文献
10.
The Solar Feature Catalogues for sunspots and active regions measured with SOHO/MDI instrument and Ca II K3 spectroheliograph of the Paris-Meudon Observatory are analyzed with the automated classification technique for sunspot groups and active region polarities. We report the first classification results for daily variations of tilt angles (normal and trigonometric ones) in sunspot groups (SG) and active (AR) regions in the cycle 23. The average normal tilts are presented for every year at the ascending and descending phases of the cycle 23 which are similar to those deduced by other authors for the cycles 19–22. The normal tilts of both the sunspot groups and active regions are shown to increase in the ascending phase and a decrease in the descending phase. Similar to SG and AR areas, the trigonometric tilts are shown to have the noticeable North–South asymmetry with the Southern hemisphere dominant in the selected ascending and descending periods. The normal tilt variations with latitude follow Joy’s law revealing a periodicity along the meridian of about 10° and reaching the maximum of 14° at the latitude of about 32° corresponding to the top of the ‘royal zone’ where the sunspots appear. The variations of polarity separation with a latitude are in an anti-phase with those of the tilts reaching a maximum at the latitude of 35° and showing a small positive separation for the groups/active regions in a vicinity of the average tilts ±40°. The ratio R of the polarity separation to the trigonometric tilt fits the linear function of a latitude φ as R = −0.0213 φ − 0.1245 confirming positive separation for the polarities of active regions with the average tilts, or the dominance of activity in the Southern hemisphere activity, for the selected period of observations. 相似文献
12.
We present a comparison of large and sharp solar wind dynamic pressure changes, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field measured by the GOES-8, 9 and 10 geosynchronous satellites. Almost 400 solar wind pressure changes in the period 1996–2003 were selected for this study. Using the large statistics we confirmed that increases (decreases) in the dynamic pressure always results in increases (decreases) in the magnitude of geosynchronous Bz component. The amplitude of the geosynchronous Bz response strongly depends on the location of observer relative to the noon meridian, from the value of solar wind pressure before the disturbance arriving and firstly – from the amplitude of the pressure change. 相似文献
13.
We use simultaneous observations from RESIK and RHESSI instruments to compare plasma properties of a major solar flare in its rise and gradual phase. This event occurred on 2002 August 3 (peak time at 19:06 UT). The flare had a very good coverage with RESIK data and well-resolved soft and hard X-ray sources were seen in RHESSI images. Spectra of X-ray radiation from RHESSI images are studied and compared with RESIK measurements in different flare phases. Result shows large differences in flare morphology and spectra between flare rise and gradual phase. 相似文献
14.
A better understanding of the ionosphere through accurate mathematical models is no doubt a crucial element. This study focuses on the challenging problem of building a model representing the complex structure of the midlatitude ionosphere. Previous studies have shown that a regional planar model is suitable in representing the total electron content (TEC) trend in the midlatitude ionosphere in both hemispheres. In this study, the planar trend model for 12 non-overlapping northern hemisphere regions in three groups of geographically near 4 regions is further investigated under different levels of solar activity; low, moderate and high. To that end, the coefficients of the model are estimated in the least squares sense using total electron content values from global ionospheric maps (GIMs) for the years 2009, 2012 and 2014. Subsequently, these coefficients are used to reconstruct estimated TEC maps which are then compared with actual GIM-TEC by investigating their difference in normalized norm squared sense. The regional planar trend model provides a particularly successful representation in the years 2012 and 2014 for which the solar activity level is the dominant factor determining the TEC trend. Under low solar activity conditions of 2009, other factors such as ocean currents, temperature variations and meteorological phenomena are suspected to have a considerable effect in some regions depending on their geographic location and on seasonal trends in those regions. As an example, studies show that under the influence of the Pacific Decadal Oscillation (PDO) and Siberian High (SH), a significant cooling trend between 2004 and 2018 in autumn is observed in Eurasia, which, in conjunction with the low solar activity levels, may be related to the deviations from the actual GIM-TEC in 2009 in these regions. As solar radiation increases, however, such bottom-side forcings are masked in 2012 and 2014 and these deviations are no longer observed. 相似文献
15.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes. 相似文献
16.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed. 相似文献
17.
In this paper we study the shape, extend and time variations of the solar wind transition surfaces using the Lima and Priest (1993) hydrodynamic model adequately adapted for the case of the solar wind flow. The transition surfaces, namely the Slow (Sonic), the Alfvén, and the Fast Magnetosonic surface, are important boundaries around the Sun and play a crucial role in the development of the solar wind and the structure of the inner heliosphere. We determine the shape and dimension of these surfaces as a function of heliographic latitude using measurements from Ulysses spacecraft, and we also study their temporal variation using data from spacecrafts at 1 AU (OMNI database). Furthermore, we establish their dependence with the solar activity, demonstrating their shape and location for the last two solar cycles. From this we noticed that the temporal variation of all transition surfaces follows the 11-year solar cycle. Finally, from the OMNI database, we have studied the temporal variation over the past 40 years of the plasma β parameter, the kinetic to magnetic and the kinetic to thermal energy ratios, at a distance of 1 AU from the Sun. 相似文献
18.
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere. 相似文献
19.
This paper presents the results of the analysis of the evolution of coronal holes (CHs) on the Sun during the period May 13, 2010 – March 20, 2022, covering Solar Cycle 24. Our study uses images in the extreme-ultraviolet iron line (Fe XII 193 Å) obtained with the Atmospheric Imager Assembly of the Solar Dynamics Observatory (AIA/SDO). To localize CHs and determine their areas, we used the Heliophysics Event Knowledgebase (HEK). We separate the CHs into polar and non-polar and study the evolutionary features of each group. During this period, an asymmetry between the Northern (N) and Southern (S) Hemispheres (N-S or hemispheric asymmetry) is detected both in the solar activity (SA) indices and in the localization of the maximum areas of the polar and non-polar CHs. It is shown that the hemispheric asymmetry of the areas of polar and non-polar CHs varies significantly over time and that the nature of these changes is clearly related to the SA cycle. We find that for most of the period, the polar CHs were predominated generated in the S- hemisphere while the non-polar CHs were dominant in the N- hemisphere. It is found that the maximum and minimum of the hemispheric imbalance in the areas of non-polar CHs are close in time to the maximum and minimum of the asymmetry of the SA indices (the number and areas of sunspots). The maximum hemispheric imbalance of the polar CH areas is observed at the maximum of Cycle 24, and the minimum imbalance is found at the cycle minimum. These results confirm our assumption that these two types of CHs are of a different nature and that the non-polar CHs, like sunspots, are elements of the general magnetic activity. 相似文献
20.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares. 相似文献
|