首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Backscatter nephelometer measurements obtained during the VEGA 1 balloon flight are reported. During periods of minor convective activity and initial balloon ascent, the data generally agree with those obtained from other Venus mission descent probes. However, during the period of greatest convective activity experienced by the VEGA 1 balloon, the signals were about a factor of two greater than any previously obtained. Although the clouds appear to be unbroken, deviations in the behavior of the detailed backscatter signals with time from those of the ambient pressure or temperature signals, especially during periods of minor convective activity, indicate much small-scale variability in cloud structure.  相似文献   

2.
Balloons lead to the highest vertical resolution of air velocity data actually attainable from atmospheric soundings. However, the pendulum-like motion of the balloon-gondola system may significantly affect these measurements if the distance between balloon and gondola is large. This may prevent the study of the highest vertical resolution range obtained. Also, if not appropriately discriminated, these fluctuations could be confused with small scale or turbulent oscillations of the atmosphere. It is shown from simple energy considerations that horizontal and vertical wind velocity perturbations introduced in the observations by the pendulum motion may usually be comparable to typical measurements. Vertical velocity data that were obtained with an instrumented gondola in a zero pressure balloon, which typically reach the lower stratosphere, are analyzed and found to be in agreement with the above statements. The pendulum-like behavior in this sounding seems to be stimulated by the buoyant oscillation of the atmosphere.  相似文献   

3.
Gravity measurements from a high-altitude balloon can verify global and upward-continued gravity models. A gravimeter suspended beneath a balloon is in a dynamic, and largely unpredictable, environment sensing accelerations due to gravity and balloon motions. Independent measurements of balloon motions using inertial navigation data combined with ground tracking data will allow for separation of balloon-induced accelerations from gravitational accelerations. Analysis of these data must estimate: 1) vertical gravimeter accelerations due to motion and gravity, 2) horizontal velocity to estimate the Eötvös effect, and 3) gravimeter position for comparison with gravity models. The first engineering test flight occurred on 11 October 1983, during the seasonal wind reversal and was very successful. Flight duration was approximately seven hours, with two hours of data collected at each of 30 km and 26 km altitudes. The results include gravity estimates, design criteria for future flights and feasibility analysis for vertical gravity profiles during ascent and descent.  相似文献   

4.
In order to predict the flight parameters and to improve the life time of long duration super-pressure balloon, a research program on modelization and experimental simulation of the balloon envelope mechanical behavior is carried out.The balloon is a 10 m diameter type made with multilayer polymeric films and tapes. A facility was developed to measure, via a stereo-correlation system, the 3D displacement and the in plane solicitation strain of a 1.5 m diameter balloon envelope part in realistic flight conditions, i.e. pressure, temperature and loading at the sample boundaries. A time dependant non-linear Maxwell model of the polymeric material behavior was identified from uniaxial creep and relaxation tests and implemented in a Finite Elements code, simulating the sample tested in the facility. The Poisson ratio of the transparent and supple balloon film has been measured with an image correlation system.Experimental results are obtained both at room and in cold conditions (−60 °C) for various values of differential pressure.Vertical displacement and in plane 2D strain of apex part deduced from the numerical modeling are compared to experimental results.  相似文献   

5.
This paper presents a new system of constant volume balloons used to study the dynamical and thermodynamical properties of the tropospheric boundary layer. The system allows to simultaneously localize up to 30 balloons and to observe thermodynamical characteristics of the air during their flight inside the boundary layer. Each balloon is equipped with a radar reflector and a sounding system giving information each second on pressure, humidity and temperature by sequential emissions which are received at a ground station. The trajectories of balloons are obtained by a non-tracking S-band radar where a special hardware processing unit allows to real time cancellation of most ground clutter. A complete set of the balloons positions is obtained every two or three minutes.The system was tested in October 1984 during a field experiment in the south of France. Results of the experimental procedure and of the quality of the balloon, radar and sounding capabilities are given. The scientific use of constant volume balloons in order to study the atmospheric boundary layer is examined.  相似文献   

6.
The Limb Infrared Monitor of the Stratosphere (LIMS) is a 6 channel scanning radiometer which measures the infrared emission by the earth's limb. These measurements are inverted to yield distributions of temperature, ozone, water vapor, nitric acid and nitrogen dioxide. The instrumentation and its orbital performance are briefly described. Retrievals of temperature and nitrogen dioxide are presented, with a discussion of their precision. Comparisons to in-situ rocket and balloon measurements are used to assess their accuracy. Special mention is made of the temperature data supplied for the FGGE II-b data sets. Results for ozone, water vapor and nitric acid are presented in companion papers.  相似文献   

7.
In June 1985, two instrumented balloons were placed in the atmosphere of Venus as part of the VEGA mission. Each balloon traveled about 30 percent of the way around the planet at a float altitude near 54 kilometers. In situsensors measured pressure, temperature, vertical wind velocity, cloud particle backscatter, ambient light level, and frequency of lightning. A ground-based network of 20 radio antennas tracked the balloons by very long baseline interferometry (VLBI) techniques to monitor the Venus winds. The history, organization, and principal characteristics of this international balloon experiment are described.  相似文献   

8.
This institute conducted a series of meteorological rocket experiments for the upper-atmospheric sounding in the winter of 1979. Within the overlap altitude range with balloon flights, a comparison of the results with the standard radiosonde data indicated that the rocket-borne system was reliable. The measurements from foru rocket flights for the region between 20 and 30 km showed a degree of compatibility to each other while those for above 30 km differed considerably from one another. At low latitude, the temperature profiles in the winter stratosphere in general showed a reasonably good agreement with the U.S. Standard Atmospheric Supplements, 1966 (USSAS 66). A temperature of 2–24°C lower than the USSAS 66, however, was recorded in the lower mesosphere. Above 30 km the maximum diurnal variation in temperature was 9°C or so. In the winter, the wind profile showed the westerlies and the maximum wind velocity of 92.1 Msec?1 was obtained from these experiments at the height of 60 km.  相似文献   

9.
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.  相似文献   

10.
The RACOON concept permits the flight of large, low-cost polyethylene balloons for several weeks at stratospheric altitudes without ballast. The theory of operations is described. The RACOON balloon ascends each morning and descends at night. This movement of 15 to 20 km in altitude provides an ideal platform for vertical soundings and sampling measurements in the stratosphere. Results of a number of globe-circling flights are presented.  相似文献   

11.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.  相似文献   

12.
Atmospheric temperatures and vertical velocities obtained from the VEGA balloon measurements indicate that the dynamical heat flux is upward and has an amplitude that ranges from 0 to 360 W m−2 in the middle cloud region. The static stability is positive and ranges from 0 to 2.0 K km−1. Time series analysis of these results indicates that convection is the principal mechanism for generating the large vertical motions. Gravity waves were also detected at these levels and account for about 15% of the covariance between temperature and vertical velocity.  相似文献   

13.
Winds obtained from geostationary satellites are compared with each other and with rawinsondes. These comparisons serve as a periodic quality check of satellite cloud motions (or winds) set up by the CGMS (Coordination for Geostationary Meteorological Satellites). Differences are taken between colocated cloud motions observed by adjacent satellites in areas of overlapping coverage (Type 1) and between colocated rawinsondes and cloud motions within the field of view of each individual satellite (Type 2).Among colocated satellite winds (Type 1) RMS vector difference of high clouds rarely exceed 10 mps and of low clouds, 6 mps. But, among colocated cloud and balloon vectors (Type 2), RMS vector differences are large. At high levels, differences range from 12 to 40 mps for GMS (Geostationary Meteorological Satellite) winds and from 10 to 18 mps for GOES (Geostationary Operational Environmental Satellite) winds. The greater disagreement of satellite winds with rawinsonde winds than with each other is attributed in large part to error in the assignment of cloud height especially in the presence of strong vertical shear and to a lesser extent on time differences between cloud and balloon measurements. Both Type 1 and 2 comparisons suffer from separations in distance (tolerated for purposes of establishing “colocation”) between cloud and balloon in the presence of strong horizontal shear. The discrepancy existing between GMS and GOES differences with rawinsondes is attributed primarily to differing techniques of height assignment.At low levels satellite winds departed from balloon winds by a RMS vector difference of about 6 to 9 mps which approached or exceeded the mean wind speed itself. This problem is attributed chiefly to the uncertainty of wind levels controlling the motion of the various low cloud types.  相似文献   

14.
本文报道了在法国南部(44°N)上空进行的两次气球飞行实验的部分负离子成分探测结果.利用自然负离子谱计算了某些硫酸离子的热化学常数ΔG, ΔH和ΔS.讨论了上升段测量中气球表面放气造成的离子化学污染.   相似文献   

15.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   

16.
    
针对平流层气球的热动力学仿真问题,提出一个可以计算升空轨迹、速度变化以及气球蒙皮温度分布的综合模型.主要分析了气球基本热力学行为和受力状况,建立气球动力学和运动学方程,以计算升空过程的轨迹和速度变化.通过将气球蒙皮分割成若干面元,研究了蒙皮面元瞬态能量平衡方程,以计算气球蒙皮温度分布.在热力学、动力学和运动学分析的基础上,建立气球综合热动力学仿真模型.引入实测风场数据,计算在实际风场条件下,平流层气球升空和驻留阶段任意时刻的热力学特性.  相似文献   

17.
An Indo-Soviet collaborative experiment on Ozonesonde Intercomparison was conducted at TERLS in March 1983. Thirteen rocket ozonesondes, eleven balloon ozonesondes and seven meteorological rockets were launched from Thumba. The rocket and balloon soundings were supported by on site Dobson spectrophotometric observations, surface ozone measurements as well as measurements with a Volz type filter photometer. The programme has yielded data on ozone vertical profiles from eleven rocketsondes, seven balloon-sondes and four sets of Umkehr observations. The data is studied with a view to intercompare the various sensors.  相似文献   

18.
双层乳胶气球克服了单层乳胶气球的缺点,可以在高空平漂以实现持续气象观测,但是其高空平漂受多因素影响比较复杂,特别是气球充气量主要依赖工程经验,施放成功率不高,亟需提供理论指导。通过试验数据证明了浮重平衡是双层乳胶气球实现高空平漂的必要条件,推导得出内、外球氢气充气量和昼夜温度变化对其运动的影响;建立了双层乳胶气球的几何模型和动力学模型,结合实地施放试验,对其升空和平漂过程轨迹进行模拟,由此探究了内、外球充气量对平漂高度的影响。研究结果表明:内球充气量是决定平漂高度的主要因素,并受昼夜温度变化影响,当内、外球规格分别为750g、500g,负载约1kg时,内球拉力每增大或减小0.04kg,最终平漂高度将对应升高或降低约5km,而外球充气量对其平漂高度无影响。   相似文献   

19.
The design and operation of a high altitude scientific balloon requires adequate knowledge of the thermal characteristics of the balloon to make it safe and reliable. The thermal models and dynamic models of altitude scientific balloons are established in this paper. Based on the models, a simulation program is developed. The thermal performances of a super pressure balloon are simulated. The influence of film radiation property and clouds on balloon thermal behaviors is discussed in detail. The results are helpful for the design and operate of safe and reliable high altitude scientific balloons.  相似文献   

20.
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号