首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.  相似文献   

2.
The ESA MarsNet mission proposal consists most probably of a trio of Mars landers. These landers each contain a variety of scientific equipment. The network of stations demands for a definition of its planetary protection requirements. With respect to the MarsNet mission only forward contamination problems will be considered. Future involvement of European efforts in planetary exploration including sample returns will also raise the problem of back contamination. A tradeoff study for the overall scientific benefit with respect to the approximative cost is necessary. Planetary protection guide-lines will be proposed by an interdisciplinary and international board of experts working in the fields of both biology and planetary science. These guide-lines will have to be flexible in order to be modified with respect to new research results, e.g. on adaptation of microorganisms to extreme (space) conditions. Experiments on the survival of microorganisms at conditions of simulated Mars surface and subsurface will have to be conducted in order to obtain a baseline data collection as a reference standard for future guide-lines.  相似文献   

3.
Planetary protection issues and the future exploration of Mars.   总被引:1,自引:0,他引:1  
A primary scientific theme for the Space Exploration Initiative (SEI) is the search for life, extant or extinct, on Mars. Because of this, concerns about Planetary Protection (PP), the prevention of biological cross-contamination between Earth and other planets during solar system exploration missions, have arisen. A recent workshop assessed the necessity for, and impact of, PP requirements on the unmanned and human missions to Mars comprising the SEI. The following ground-rules were adopted: 1) information needed for assessing PP issues must be obtained during the unmanned precursor mission phase prior to human landings; 2) returned Mars samples will be considered biologically hazardous until proven otherwise; 3) deposition of microbes on Mars and exposure of the crew to Martian materials are inevitable when humans land; and, 4) human landings are unlikely until it is demonstrated that there is no harmful effect of Martian materials on terrestrial life forms. These ground-rules dictated the development of a conservative PP strategy for precursor missions. Key features of the proposed strategy include: 1) for prevention of forward contamination, all orbiters will follow Mars Observer PP procedures for assembly, trajectory, and lifetime. All landers will follow Viking PP procedures for assembly, microbial load reduction, and bioshield; and, 2) for prevention of back contamination, all sample return missions will have PP requirements which include fail-safe sample sealing, breaking contact chain with the Martian surface, and containment and quarantine analysis in an Earth-based lab. In addition to deliberating on scientific and technical issues, the workshop made several recommendations for dealing with forward and back contamination concerns from non-scientific perspectives.  相似文献   

4.
Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension.  相似文献   

5.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   

6.
As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.  相似文献   

7.
Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.  相似文献   

8.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

9.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   

10.
载人火星探测的行星保护   总被引:1,自引:0,他引:1       下载免费PDF全文
行星保护是影响载人火星探索任务的重要问题之一。载人探测的行星保护包括3个方面,即防止来源于地球的微生物污染目标星球的正向污染防护、防止外来生物对地球的潜在危害的逆向污染防护,以及确保航天员的健康和安全。国际宇航界已经开始针对载人火星探测的行星保护制定政策法规和开展技术研讨。本文介绍了行星保护的定义和法理依据,简要回顾了美国国家航空航天局在“阿波罗登月”中的行星保护措施,并对未来载人火星探测中的主要污染物、污染途径以及污染防护策略进行了初步探讨。  相似文献   

11.
Man is now entering an era of colonizing the moon and exploration of Mars. The crewmembers of a piloted mission to Mars will be exposed to inner belt trapped protons, the outer trapped electrons, and the galactic cosmic radiation. In addition there is always the added risk of acute exposure to a solar particle event. Current radiation risk is estimated using the idea of absorbed dose and ICRP-26, LET-dependent quality factors. In a spacecraft with aluminum walls (2 g cm-2) at solar minimum the calculated dose equivalent is 0.73 Sv for a 406-day mission. Based on the current thinking this leads to an excess cancer mortality in a 35 year male of about 1%. About 75% of the dose equivalent is contributed by HZE particles and target fragments with average quality factors of 10.3 and 20, respectively. The entire concept of absorbed dose, quality factor, and dose equivalent as applied to such missions needs to be reexamined, in light of the fact that less than 50% of the nuclei in the body of the astronaut would have been traversed by a single GCR nuclei in the 406-day mission. Clearly, more biologically relevant information about the effects of heavy ions and target fragments is needed and fluence based risk estimation strategy developed for such long term stays in space.  相似文献   

12.
Societal and non-scientific factors represent potentially significant impediments for future Mars missions, especially in areas involving planetary protection. This paper analyzes public concerns about forward contamination to Mars and back contamination to Earth, evaluates major areas where lack of information may lead to uncontrollable impacts on future missions, and concludes that NASA should adopt a strategy that actively plans both the generation and subsequent management of planetary protection information to ensure that key audiences obtain needed information in a timely manner. Delay or avoidance in dealing with societal issues early in mission planning will increase the likelihood of public opposition, cost increases and missed launch windows. While this analysis of social and non-scientific considerations focuses on future Mars missions, the findings are also relevant for RTG launches, nuclear propulsion and other NASA activities perceived to have health, safety or environmental implications.  相似文献   

13.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

14.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

15.
Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations.  相似文献   

16.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

17.
Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates.  相似文献   

18.
Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.  相似文献   

19.
The 1967 treaty on the peaceful uses of outer space reflected both concerns associated with the unknown nature of the space environment and the desire of the world scientific community to preserve the pristine nature of celestial objects until such times as they could be studied in an effective manner. Since 1967, NASA has issued policy directives that have adopted the guidelines of COSPAR for protecting the planets from contamination by Earth organisms and for protecting the Earth from the unknown. This paper presents the current status of planetary protection (quarantine) policy within NASA, and a prospectus on how planetary protection and back contamination issues might be addressed in relation to future missions envisioned for development by NASA either independently, or in cooperation with the space agencies of other nations.  相似文献   

20.
Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号