首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Median cascaded canceller for robust adaptive array processing   总被引:2,自引:0,他引:2  
A median cascaded canceller (MCC) is introduced as a robust multichannel adaptive array processor. Compared with sample matrix inversion (SMI) methods, it is shown to significantly reduce the deleterious effects of impulsive noise spikes (outliers) on convergence performance of metrics; such as (normalized) output residue power and signal to interference-plus-noise ratio (SINR). For the case of no outliers, the MCC convergence performance remains commensurate with SMI methods for several practical interference scenarios. It is shown that the MCC offers natural protection against desired signal (target) cancellation when weight training data contains strong target components. In addition, results are shown for a high-fidelity, simulated, barrage jamming and nonhomogenous clutter environment. Here the MCC is used in a space-time adaptive processing (STAP) configuration for airborne radar interference mitigation. Results indicate the MCC produces a marked SINR performance improvement over SMI methods.  相似文献   

2.
Airborne/spacebased radar STAP using a structured covariance matrix   总被引:5,自引:0,他引:5  
It is shown that partial information about the airborne/spacebased (A/S) clutter covariance matrix (CCM) can be used effectively to significantly enhance the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: 1) a mismatched GCM, and 2) the high-fidelity Research Laboratory STAP clutter model. For both clutter models, the new algorithm performed significantly better (i.e., converged faster) than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.  相似文献   

3.
Reiterative median cascaded canceler for robust adaptive array processing   总被引:1,自引:0,他引:1  
A new robust adaptive processor based on reiterative application of the median cascaded canceler (MCC) is presented and called the reiterative median cascaded canceler (RMCC). It is shown that the RMCC processor is a robust replacement for the sample matrix inversion (SMI) adaptive processor and for its equivalent implementations. The MCC, though a robust adaptive processor, has a convergence rate that is dependent on the rank of the input interference-plus-noise covariance matrix for a given number of adaptive degrees of freedom (DOF), N. In contrast, the RMCC, using identical training data as the MCC, exhibits the highly desirable combination of: 1) convergence-robustness to outliers/targets in adaptive weight training data, like the MCC, and 2) fast convergence performance that is independent of the input interference-plus-noise covariance matrix, unlike the MCC. For a number of representative examples, the RMCC is shown to converge using ~ 2.8N samples for any interference rank value as compared with ~ 2N samples for the SMI algorithm. However, the SMI algorithm requires considerably more samples to converge in the presence of outliers/targets, whereas the RMCC does not. Both simulated data as well as measured airborne radar data from the multichannel airborne radar measurements (MCARM) space-time adaptive processing (STAP) database are used to illustrate performance improvements over SMI methods.  相似文献   

4.
Stap using knowledge-aided covariance estimation and the fracta algorithm   总被引:1,自引:0,他引:1  
In the airborne space-time adaptive processing (STAP) setting, a priori information via knowledge-aided covariance estimation (KACE) is employed in order to reduce the required sample support for application to heterogeneous clutter scenarios. The enhanced FRACTA (FRACTA.E) algorithm with KACE as well as Doppler-sensitive adaptive coherence estimation (DS-ACE) is applied to the KASSPER I & II data sets where it is shown via simulation that near-clairvoyant detection performance is maintained with as little as 1/3 of the normally required number of training data samples. The KASSPER I & II data sets are simulated high-fidelity heterogeneous clutter scenarios which possess several groups of dense targets. KACE provides a priori information about the clutter covariance matrix by exploiting approximately known operating parameters about the radar platform such as pulse repetition frequency (PRF), crab angle, and platform velocity. In addition, the DS-ACE detector is presented which provides greater robustness for low sample support by mitigating false alarms from undernulled clutter near the clutter ridge while maintaining sufficient sensitivity away from the clutter ridge to enable effective target detection performance  相似文献   

5.
Space-time adaptive processing (STAP) holds tremendous potential for the new generation airborne surveillance radar, in which the phased array antennas and pulse Doppler processing mode are adopted. A new STAP approach using the multiple-beam and multiple Doppler channels is presented here for airborne phased array radar. The approach with space-time multiple-beam (STMB) architecture is robust to array errors and has very low system degrees of freedom (DOFs). Hence, it has low sample support requirement and it is very suitable for the practical planar phased array radar under nonhomogeneous clutter environments. Meanwhile, a new nonhomogeneous detector (NHD) based on the correlation dimension (CD) is also proposed here, which is used as an effective method to screen tracing data prior to detection processing. It can further improve the performance of the STAP approach in the severely nonhomogeneous clutter environments. Therefore, a scheme that incorporates the correlation dimension nonhomogeneity detector (CD-NHD) with the STMB is recommended, which we term CD-NHD-STMB. The experimental simulation results indicate that: 1) the STMB processor is robust to array element error and has high performance under nonhomogeneous clutter environments; 2) the CD-NHD is also effective on the nonhomogeneous clutter. As a result, the CD-NHD-STMB scheme is robust to array element error and nonhomogeneous clutter, and therefore available for airborne phased array radar applications.  相似文献   

6.
Comparison between monostatic and bistatic antenna configurationsfor STAP   总被引:3,自引:0,他引:3  
The unique characteristics of bistatic radar operation on the performance of airborne/spaceborne moving target indicator (MTI) radars that use space-time adaptive processing (STAP) are discussed. It has been shown that monostatic STAP radar has the following properties. 1) For a horizontal flight path and a planar Earth the curves of constant clutter Doppler (isodops) are hyperbolas. 2) For a sidelooking antenna geometry the clutter Doppler is range independent. 3) Clutter trajectories in the cosφ-F plane (F=normalized Doppler) are in general ellipses (or straight lines for a sidelooking array). We demonstrate that these well-known properties are distorted by the displacement between transmitter and receiver in a bistatic configuration. It is shown that even for the sidelooking array geometry the clutter Doppler is range-dependent which requires adaptation of the STAP processor for each individual range gate. Conclusions for the design of STAP processors are drawn  相似文献   

7.
NEW METHOD FOR REDUCED RANK STAP—NON CLUTTER CHANNEL METHOD   总被引:1,自引:0,他引:1  
Space- time adaptive processing(STAP) is aleading technology candidate for improving detec-tion performance of advanced airborne early warn-ing radar.In practical radar systems,the optimumfully adaptive space- time processing[1] cannot al-ways be implemented because of the computationalcomplexity,so the design of suboptimum proces-sors has been one of the key topics in STAP.Sev-eral reduced- rank STAP methods have been pro-posed in recent years.For example,based on thegeneralized sidelobe…  相似文献   

8.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

9.
一种基于角度-多普勒补偿的均匀圆形   总被引:2,自引:1,他引:1  
采用均匀圆形相控阵天线的机载雷达杂波分布随距离变化而变化,各距离单元的杂波不再满足独立同分布的条件,造成统计型空时自适应处理(STAP)器性能下降。基于此,本文建立了均匀圆形天线机载雷达模型,对其杂波分布进行了分析,得出了空间角随阵元数非线性变化的特性造成其杂波距离维分布非均匀的结论。研究了一种均匀圆形天线机载雷达杂波抑制方法,该方法先通过修正的角度-多普勒补偿(MADC)预处理消除在杂波谱中心处的非均匀,再利用基于导数更新(DBU)技术进一步减小在其他方位杂波的非均匀程度。仿真结果表明了该方法的有效性。  相似文献   

10.
章涛  钟伦珑  来燃  郭骏骋 《航空学报》2021,42(6):324592-324592
杂波谱稀疏恢复空时自适应处理(STAP)是一种有效减少杂波样本数需求的机载雷达杂波抑制方法。然而,空时平面被离散地划分为若干个网格点来构建空时导向矢量字典,当字典在失配时,杂波脊不能准确落在预先离散化的网格点上,稀疏恢复STAP性能严重下降。提出了一种基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法,首先利用二维泰勒级数建立空时动态字典模型,然后将字典失配误差作为待估超参数构建贝叶斯稀疏恢复模型,并利用失配误差估计值对空时导向矢量字典进行修正,最后利用修正后的空时导向矢量字典重构杂波协方差矩阵,进而计算杂波空时谱。实验证明,该方法能够有效提高字典失配情况下的杂波谱稀疏恢复精度,杂波抑制性能优于已有字典预先离散化的稀疏贝叶斯学习STAP方法。  相似文献   

11.
赵军  朱兆达 《航空学报》2009,30(5):932-937
采用均匀圆形相控阵天线的机载雷达杂波分布随距离变化而变化,各距离单元的杂波不再满足独立同分布的条件,造成统计型空时自适应处理(STAP)器性能下降。基于此,本文建立了均匀圆形天线机载雷达模型,对其杂波分布进行了分析,得出了空间角随阵元数非线性变化的特性造成其杂波距离维分布非均匀的结论。研究了一种均匀圆形天线机载雷达杂波抑制方法,该方法先通过修正的角度 多普勒补偿(MADC)预处理消除在杂波谱中心处的非均匀,再利用基于导数更新(DBU)技术进一步减小在其他方位杂波的非均匀程度。仿真结果表明了该方法的有效性。  相似文献   

12.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

13.
非正侧视阵列机载雷达多空间角补偿算法   总被引:1,自引:0,他引:1  
赵军  朱兆达 《航空学报》2010,31(11):2216-2221
 非正侧阵列机载雷达的杂波分布随距离变化而变化,各距离单元的杂波分布不再满足独立同分布条件,造成统计型空时自适应处理(STAP)处理器性能下降。本文提出了一种多空间角补偿(MSAC)的非正侧视机载雷达杂波抑制方法,该方法先通过角度-多普勒补偿(ADC)预处理以消除在谱中心处的杂波非均匀,然后采用MSAC法在多个多普勒方向使参考单元和待检测单元的杂波谱保持一致,从而进一步消除在其余方位的杂波非均匀。仿真结果表明了该方法的性能明显优于ADC法,且运算量增加不多。  相似文献   

14.
基于杂波子空间估计的MIMO雷达降维STAP研究   总被引:1,自引:0,他引:1  
翟伟伟  张弓  刘文波 《航空学报》2010,31(9):1824-1831
 多输入多输出(MIMO)雷达是近年来出现的一种新体制雷达,针对MIMO体制的机载雷达开展空时自适应处理(STAP)技术研究是值得进一步努力的方向。本文研究了机载MIMO雷达STAP技术的降维算法,通过对STAP技术杂波抑制原理进行分析,推导并得到一种基于杂波子空间的降维算法。结合扁长椭球波函数(PSWF)的特点,提出了一种基于杂波子空间估计的降维算法,并与若干降维算法的杂波抑制性能进行比较。结果表明,当存在阵元幅相误差时,该算法在保持杂波抑制性能的同时能够有效地降低STAP算法的运算量。  相似文献   

15.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

16.
Importance sampling for characterizing STAP detectors   总被引:1,自引:0,他引:1  
This paper describes the development of adaptive importance sampling (IS) techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using IS methods has been notably successful in the study of conventional constant false alarm rate (CFAR) radar detectors, and in several other applications. The principal objectives here are to examine the viability of using these methods for STAP detectors, develop them into powerful analysis and design algorithms and, in the long term, use them for synthesizing novel detection structures. The adaptive matched filter (AMF) detector has been analyzed successfully using fast simulation. Of two biasing methods considered, one is implemented and shown to yield good results. The important problem of detector threshold determination is also addressed, with matching outcome. As an illustration of the power of these methods, two variants of the square-law AMF detector that are thought to be robust under heterogeneous clutter conditions have also been successfully investigated. These are the envelope-law and geometric-mean STAP detectors. Their CFAR property is established and performance evaluated. It turns out the variants have detection performances better than those of the AMF detector for training data contaminated by interferers. In summary, the work reported here paves the way for development of advanced estimation techniques that can facilitate design of powerful and robust detection algorithms  相似文献   

17.
The practical implementation of adaptive Doppler filters requires estimates of clutter parameters to determine the adaptive weights. A method of deriving the estimate via the sample matrix inversion (SMI) algorithm using multiple data snapshots from adjacent range cells is presented. For homogeneous clutter environments, the results of this technique asymptotically approach the optimum (a priori known covariance matrix) as the number of snapshots approaches infinity; this asymptotic behavior does not occur for heterogeneous clutter environments. An equation for the decrease in improvement factor is derived. To promote understanding, the simplified special case of narrowband clutter is considered in detail. In almost all cases, the loss is small  相似文献   

18.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

19.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

20.
Space-time adaptive processing (STAP) has been widely discussed for airborne radar systems to improve the system performance of detecting targets. This is especially true for airborne early warning (AEW) radar, which should find long-range and small radar cross section (RCS) targets such as the stealth aircraft and missiles. However, in existing airborne radar literature, STAP is mainly considered for clutter and jamming rejection in side-looking airborne radar (SLAR) applications. There have been fewer discussions on airborne radar with non-side-ways looking array radar (non-SLAR). The STAP of non-SLAR such as forward looking array radar is also very important and can not be avoided for airborne radar to detect targets in all directions. The STAP of the non-SLAR is studied here. A scheme has been proposed, which is processed by the way of STAP combined with multiple staggered medium pulse repetition frequencies (PRFs). We further study the selection of PRFs in order to make the scheme more available for non-SLAR radar. We analyze two typical non-SLAR cases, i.e., inclined-sideways looking array and forward looking array. We examine this scheme by comparing the performances of three processing systems under the criteria of range-velocity blind zone minimization. Computer simulation results show the multiple-PRFs STAP scheme is feasible for non-SLAR and can be applied to phased-array AEW radar systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号