首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SMESE (SMall Explorer for Solar Eruptions) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman α imager and a Lyman α coronagraph), DESIR (an Infra-red Telescope working at 35–80 and 100–250 μm), and HEBS (a High Energy Burst Spectrometer working in X- and gamma-rays).  相似文献   

2.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


3.
The intensity of the resonantly scattered Ly-α line of the gian planets depends on the scattering column length of atomic hydrogen above the methane layer and on the incident solar flux. We have obtained measurements of the Ly-α brightness of Jupiter and Saturn on December 19, 1979, with a time difference of 111 minutes, which is only slightly longer than the additional travel time for solar photons scattered at Saturn compared to those from Jupiter. This observational technique eliminates two major uncertainties — the use of different instruments and solar variability — affecting previous determinations of the relative brightness of the planets. The measured ratio of the brightness of the subsolar points is 3.0 ± 0.4 which agrees well with the ratio of the incident solar flux of 3.4. This implies approximately equal scattering column lengths of H on both planets.  相似文献   

4.
There is increasing evidence suggesting that coronal acceleration supplies at least part of the particles observed during solar energetic particle events, yet coronal processes tend to be mostly disregarded in these studies. This is often due to the fact that the coronal restructuring in the early development of the associated flare and/or coronal mass ejection event is extremely fast (on the order of a few minutes) and can encompass most of the solar disk, thus requiring a full disk solar imager with very high time-cadence, and wide spectral coverage. An important subset of the energetic particle events are the near-relativistic impulsive electron events detected near Earth: their onsets can be traced back to a release time in the low corona with accuracies on the order of a couple of minutes. We investigate a series of impulsive electron events from 1998 to 2001 using energetic electron data measured in situ by the Electron, Proton, and Alpha Monitor (EPAM) experiment on the Advanced Composition Explorer (ACE) spacecraft, and radio coronal observations from the Nanqay Radioheliograph, the Decametric Array from Nanqay and the WAVES experiment on the WIND spacecraft. EPAM measures electrons in the energy range from 40 to 300 keV over a wide range of look directions and with better than 1 minute time resolution, while the Nançay radioheliograph provides images of the solar corona at 5 different frequencies with time cadence of 8 images per second and per frequency. This study focuses on the events which correspond to a delay, between the inferred injection times of the electrons at the Sun, and the electromagnetic emissions from flares, of at least 5 minutes. Radio signatures are found near the estimated time of the electron release for each of the events. The timing and spectral characteristics of the radio emissions, when compared with the properties of the particles seen at EPAM, strongly support an acceleration process in the corona but at highly variable heights from one event to the other.  相似文献   

5.
In 2006 to 2008,the main activities in Chinese space astronomy focus on:(1)undertaking some missions set by CNSA,like HXMT,SMESE,wso/vv,SST,KUAFU,and so on;(2)drawing up a long-term plan of Chinese space astronomy.This paper summarizes in brief all these activities.  相似文献   

6.
低温环境下红外场景生成装置的标定是对低温红外目标特征评估和精准探测的前提。通过标定过程中热辐射-光子-电子转换测量的传递途径,建立基于红外热像仪灰度的低温标定模型,用最小二乘法进行拟合,得到模型中的辐射出射度响应函数和系统固有偏置。搭建了低温标定实验装置,根据热像仪对低温辐射源不同辐射出射度的测量结果,得到标定方程。分析了理论值和实际测量值的误差,在低温黑体辐射出射度9.79W/m2处,热像仪的辐射出射度误差最大,为-0.17W/m2,此时的灰度误差为-9.91DN。  相似文献   

7.
基于双响应波段工作的红外热像仪测温原理与误差分析   总被引:1,自引:0,他引:1  
为了提高红外热像仪测温的准确性,根据红外辐射理论,从红外热像仪的测温原理出发,分析了基于双响应工作波段的热像仪的测温原理,得出了目标物体的发射率、物体温度计算公式以及相应误差的估算公式,分析了各影响因素对热像仪测量准确度的影响,提供了一种目标物体发射率的测定方法,对利用红外热像仪准确测量内燃机等热能机械表面温度具有重要的意义。  相似文献   

8.
In 2006 to 2008,the main activities in Chinese space astronomy focus on:(1) undertaking some missions set by CNSA,like HXMT,SMESE,WSO/UV,SST,KUAFU,and so on;(2) drawing up a long-term plan of Chinese space astronomy.This paper summarizes in brief all these activities.  相似文献   

9.
修正的动力盘模型与三维模拟螺旋桨滑流比较   总被引:1,自引:0,他引:1  
比较用于研究螺旋桨滑流对机翼影响的4种数值模拟方法,即未进行修正的动力盘数值模拟、修正的片条理论应用于动力盘模型的数值模拟、有旋转的修正的片条理论应用于动力盘模型的数值模拟及定常三维实体螺旋桨数值模拟求解RANS(Reynolds Averaged Navier-Stokes)方程.以某半径为1.008 m三叶螺旋桨在转速为2 575 r/min,飞行速度为 66.889 m/s 工况下螺旋桨后的轴向和环向诱导系数作为评估依据进行比较,结果表明:修正的动力盘模型和三维实体模型数值模拟能预测螺旋滑流区内的流动情况,而三维实体模型能更多地反映流动细节,但是会增加计算成本,表明动力盘模型可以替代三维实体螺旋桨进行数值模拟.  相似文献   

10.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   

11.
本文阐述了一种可行的面阵CCD 成象光谱仪的设计。它具有光谱范围宽(0.4μm~1.1μm)、高光谱分辨率(9.2nm)、密集的光谱波段数(76)、较大的地物扫描视场角(30°)等一系列引人注目的优点。  相似文献   

12.
Analysis of polarimetric observations of Saturn was carried out. In the long wave-length spectral range (λ > 0.5μm) polarimetric observations do not contradict the model of spherical or irregular randomly oriented particles. In the short wave-length spectral interval (λ < 0.5μm) it is necessary to take into account the scattering by oriented particles.  相似文献   

13.
Aerosol optical depth (AOD) is one of the most important indicators of atmospheric pollution. It can be retrieved from satellite imagery using several established methods, such as the dark dense vegetation method and the deep blue algorithm. All of these methods require estimation of surface reflectance prior to retrieval, and are applicable to a certain pre-designated type of surface cover. Such limitations can be overcome by using a synergetic method of retrieval proposed in this study. This innovative method is based on the fact that the ratio K of surface reflectance at different angles/geometries is independent of wavelength as reported by Flowerdew and Haigh (1995). An atmospheric radiative transfer model was then established and resolved with the assistance of the ratio K obtained from two Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands acquired from the twin satellites of Terra and Aqua whose overpass is separated by three hours. This synergetic method of retrieval was tested with 20 pairs of MODIS images. The retrieved AOD was validated against the ground observed AOD at the Taihu station of the AErosol RObotic NETwork (AERONET). It is found that they are correlated with the observations at a coefficient of 0.828 at 0.47 μm and 0.921 at 0.66 μm wavelengths. The retrieved AOD has a mean relative error of 25.47% at 0.47 μm and 24.3% at 0.66 μm. Of the 20 samples, 15 and 17 fall within two standard error of the line based observed AOD data on the ground at the 0.47 μm and 0.66 μm, respectively. These results indicate that this synergetic method can be used to reliably retrieve AOD from the twin satellites MODIS images, namely Terra and Aqua. It is not necessary to determine surface reflectance first.  相似文献   

14.
CCD星敏感器光学系统设计   总被引:4,自引:1,他引:3  
介绍CCD星敏感器用光学系统设计的参数选择,光学系统的设计光谱范围0.48、0.85μm;焦距为75mm,F/1.44,视场8.5°。该系统为复杂化的Petzval结构形式;以点列图能量集中度和能量重心偏评价光学系统的成像质量。所选用的CCD芯片像元尺寸为23μm×23μm,像元数384×288,全视场内混色光点列图能量重心偏最大值1.6μm,对应于4.39角秒。  相似文献   

15.
The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550–900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.  相似文献   

16.
电离层等离子体不规则结构通常会影响星地卫星的通信、导航及定位等,因此研究不规则体的结构特征和演化过程具有非常重要的科学意义和应用价值。中尺度电离层行进式扰动(MSTID)是一种常发于F层的电离层扰动,其演化过程十分复杂。本文利用伊春和兴隆台站全天空气辉成像仪、Swarm卫星、佳木斯高频雷达以及漠河和十三陵台站数字测高仪观测数据,对2018年10月17日夜间出现在中国东北区域上空的MSTID事件进行分析。该MSTID事件传播时间较长,在气辉观测中持续时间超过4 h(12:02-16:23 UT),其波长范围为176.3~322.5 km,波速范围为67.0~154.1 m·s–1。研究结果显示,该MSTID可能产生于较高的纬度,自东北向西南往中纬传播,依次经过伊春和兴隆台站的气辉观测区域。   相似文献   

17.
大气重力波是大气中的基本波动形式之一,在中高层大气动力和热力学过程中起着十分重要的作用.全天空气辉成像仪是一种以大气气辉辐射为示踪物,能够有效对大气重力波成像的仪器.本文针对中国科学院国家空间科学中心空间天气学国家重点实验室中高层大气组自主研制的全天空气辉成像仪所观测的数据,提出了一种气辉图像预处理方法,进行平场校正、方位校正、星光去除和坐标映射等数据订正.利用该方法处理2015年5月17日21:00BLT至次日05:00BLT西宁台站(36.6°N,101.7°E)的OH气辉数据,发现一次重力波事件,分析并获得了该重力波的水平波长、观测水平相速度和传播方向(分别为17.72km,47m·s-1,339°).研究结果表明该方法是可行的.   相似文献   

18.
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) aboard the Upper Atmosphere Research Satellite (UARS) has been measuring solar UV irradiances since October 1991, a period which includes the decline of solar cycle 22 followed by the rise of cycle 23. Daily solar measurements include scans over the wavelength range 115–410 nm at 1.1 nm resolution. As expected, the measured time series of UV irradiances exhibit strong periodicities in solar cycle and solar rotation. For all wavelengths, the UV irradiance time series are similar to that of the Mg II core-to-wing ratio. During solar cycle 22, the irradiance of the strong Ly- line varied by more than a factor of two. The peak-to-peak irradiance variation declined with increasing wavelength, reaching 10% just below the Al edge at 208 nm. Between the Al edge and 250 nm the variation was 6–7%. Above 250 nm, the variation declines further until none is observed above 290 nm. Preliminary results for the first portion of cycle 23 indicate that the far UV below the Al edge is rising at about the same rate as the Mg II index while the irradiances in the Ly- emission line and for wavelengths longer than the Al edge are rising more slowly — even after accounting for the lower level of activity of cycle 23.  相似文献   

19.
This paper presents a new approach to forecasting short-term Lyα solar irradiance variations due to the presence and evolution of magnetically heated regions in the Sun’s outer atmosphere. This scheme is based on images of the solar disk at key wavelengths, currently Ca II K filtergrams, maps of backscattered solar Lyα from the interplanetary medium, and helioseismic images of large far-side active regions. The combination of these resources allows accurate forecasts of the UV solar irradiance several days in advance. The technique takes into consideration the evolution of recently observed activity on the Sun’s near surface as well as active regions on the Sun’s far side. The far-side helioseismic maps and the Lyα backscattering are very important, because of the long period of time features spend on the Sun’s far side compared with their typical evolution time and their relatively sudden appearance on the near side. We describe the basics of the forecasting technique and apply it to a case study that shows how the technique dramatically improves Lyα irradiance forecasting. An extension of the technique described here promises realistic forecasts of the entire FUV/EUV solar spectral irradiance spectrum.  相似文献   

20.
Environment and disaster monitoring and forecasting small satellite constellation A and B satellites (HJ-1-A, B) are called "environment and disaster reduction satellites A and B' for short. The constellation adopts a 10:30 LT sun-synchronous circular orbit, with orbit altitude of 649 km. HJ-1-A and HJ-1-B are distributed with a phase difference of 180o in the same orbital plane, so as to enhance the time resolution of earth observation. The satellites have orbit maintenance capability, the lifetime is 3 years. Both satellites adopt CAST968 platforms. Two wide-coverage multispectral CCD cameras with resolution 30 m and width 700 km, a super-spectral imager with resolution 100 m and width 50 km as well as a data transmission subsystem of 120 Mbit/s are deployed on HJ-1-A, which also carries Ka communication testing equipment of Thailand. HJ-1-B has two wide-coverage multispectral CCD cameras (the same as satellite A), one infrared camera with resolution 150 m and width 720 km and a data transmission subsystem of 60 Mbit/s. The coverage period of the wide-coverage multispectral CCD camera is 48 hours. The revisit period of super-spectral imager is 96 hours and the coverage period of infrared camera is 96 hours.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号