首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The X-ray spectra of broad line active galactic nuclei of all types (Seyfert I's, NELG's, Broadline radio galaxies) is well fit by a power law in the .5–100 keV band of mean energy slope α = .68±.15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability.On time scales longer than 12 hours most radio quiet AGN do not show strong, ΔI/I > .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristic timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable on long, τ 6 month, timescales.  相似文献   

2.
To understand the connection among the subclasses of BL Lac Objects, FR I radio galaxies and Flat spectrum radio quasars (FSRQs), here the correlations of the bolometric luminosities with redshifts and brightness temperatures of these objects are studied. The bolometric luminosities vary linearly with redshifts, but few objects are scattered at high redshift. The bolometric luminosity versus brightness temperature distribution shows a correlation between these two components, except a few scattered objects, mostly RBLs. The bolometric luminosities and brightness temperatures of FR I radio galaxies with low redshift (<0.1) and low spectral index (αrx < 0.75) are comparable to those of XBLs and those characteristics of FR I radio galaxies, with relatively high redshift (>0.2) and high spectral index, can be comparable with RBLs with low redshift (z < 0.5) and low bolometric luminosity. Those scattered RBLs with high redshifts (z > 0.5) are believed to be in complex environment with companion galaxies, most of these RBLs are still unresolved. The bolometric luminosity and brightness temperature of these scattered RBLs are comparable to those of quasars. The FSRQs are at high redshifts and bolometric luminosities and the brightness temperatures are also high relative to BL Lac Objects. These results support the FRI/BL Lac unification scheme. It suggests that, the FR I radio galaxies may be the parent populations of the BL Lac Objects, but it needs more investigation to confirm the unification of FR I radio galaxies, XBLs and RBLs.  相似文献   

3.
Extragalactic research studies by the Harvard/Smithsonian group with the Einstein Observatory have emphasized quasars and clusters of galaxies. More than 100 QSO's have been detected, including 20 serendipitous discoveries. The ratio of Lx/Lo for radio loud quasars is on the average 3 times that of radio quiet ones. QSO's with a large intrinsic optical luminosity have a smaller ratio of Lx/Lo. X-ray images of clusters of galaxies reveal a variety of morphological types which may correspond to different stages in their evolution. Several examples of bi-modal clusters have been discovered. An X-ray plume associated with M86 is apparently gas being stripped. From X-ray studies, a mass between 1.7 × 1013Mθ and 4.0 × 1013 Mθ has been derived for M87.  相似文献   

4.
The relative contribution to the γ-ray background of different types of sources, namely Seyfert Galaxies, Quasars, BL Lac objects, radio galaxies and field galaxies is estimated under the hypothesis that the cosmic diffuse flux is the result of a superposition of many unresolved galaxies. The γ-ray data indicate that the Seyfert volume emissivity matches that of the diffuse background at few hundred keV and exceeds it at higher energies by as much as a factor of about 4. Whilst normal galaxies contribute less than 0.1%, BL Lac objects, Quasars and Radio Galaxies may contribute as much as 5–10% each, even without significant evolution. In this paper we explore different ways of reconciling the observational data on active galaxies with the measured diffuse background level.  相似文献   

5.
The evolution of luminous QSOs is linked to the evolution of massive galaxies. We know this because the relic black-holes found locally have masses dependent on the properties of the host galaxy’s bulge. An important way to explore this evolution would be to measure dependences of black-hole masses and Eddington accretion ratios over a range of redshifts, i.e., with cosmological age. For low redshift QSOs (and their lower luminosity Seyfert galaxy counterparts) it has been possible to infer black-hole masses from the luminosities and velocity dispersions of their host-galaxy bulges. These masses agree with those virial black-hole masses calculated from the Doppler widths of the broad Hβ emission lines. The latter method can then be extended to more distant and luminous QSOs, up to redshifts of 0.6 with ground-based optical observations. We discuss ways to extend these explorations to higher redshifts – up to 3 using the widths of QSOs’ broad UV emission lines, and in principle, and to redshifts near 4 from ground-based infrared observations of rest-frame Hβ at 2.5 μm. We discuss the possibility of investigating the accretion history of the higher redshift QSOs using measures of Eddington accretion ratio – the soft X-ray spectral index and the eigenvectors of Principal Components Analyses of QSOs’ UV emission-line spectra.  相似文献   

6.
Imaging X-ray observations of normal spiral galaxies show extended and complex x-ray emission, easily explainable with a complex of unresolved X-ray sources. A variety of nuclear sources, including starburst nuclei and miniature active nuclei are seen. The total (0.5–3.0 keV) luminosities are in the range of Lx 1038 - 1040 erg s−1. The X-ray luminosity is linearly correlated with the optical luminosity. It is also correlated with the radio continuum luminosity at 21cm, but following a power law relationship with an exponent α = 0.6. This latter relationship might have implications on the Population I X-ray binary formation models and/or on the origin of the radio continuum emission in spiral galaxies  相似文献   

7.
Short and long GRBs are thought to be two distinct classes based on their different duration and spectrum. Through the spectral analysis of two similarly selected samples of BATSE short and long GRBs, we show that short GRBs are harder than long events, confirming what found from the comparison of their hardness ratio. However, this spectral diversity seems to be due to a harder low energy spectral component of short GRBs, rather than a (slightly higher) peak energy. Interestingly short GRBs have a spectrum which is similar to the spectrum of the emission of the first 1–2 s of long events. We find evidence that short GRBs are inconsistent with the EpeakEiso correlation defined by long bursts while they follow the same EpeakLiso correlation of long GRBs. These results, coupled to the similar variability timescale of short events and the first seconds of long ones, suggest that a common (or similar) dissipation mechanism could operate in both classes. The difference in the duration would then be due mainly to the central engine lifetime.  相似文献   

8.
Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinary advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.  相似文献   

9.
Thick accretion disks with narrow funnels around massive black holes are considered promising models for active galactic nuclei. These models assume a supercritical accretion rate and emit collimated beams with super-Eddington luminosities. We have made approximate calculations of the interaction between the emerging radiation and the walls for an optically thin funnel. The results are sensitive to the sound velocity and to the viscosity parameter α. They suggest that a significant particle luminosity can accompany the radiation in the super-Eddington case. By applying an Eddington type limit based on mechanical equilibrium to a suitably chosen interior surface in the disk, we find that energy transport, if radiative, can strongly limit the efficiency of these models.  相似文献   

10.
Two key problems on the ‘hidden’ nucleus of NGC 1068 are discussed, based on the archival Hubble Space Telescope images. First, we discuss the accurate location of the nucleus. We have found that the most probable location is only ∼ 0.″1 (∼ 7 pc) south of the UV brightest cloud. Second, we consider the intrinsic luminosity of the hidden nucleus. We show that its lower limit is as large as ∼ 2 × 1045 erg/sec, suggesting that the luminosity is almost at the Eddington limit.  相似文献   

11.
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum.  相似文献   

12.
Quasars are the most luminous sources in the Universe. They are currently observed out to redshift z≈7z7 when the Universe was less than one tenth of its present age. Since their discovery 50 years ago astronomers have dreamed of using them as standard candles. Unfortunately quasars cover a very large range (8 dex) of luminosity making them far from standard. We briefly review several methods that can potentially exploit quasars properties and allow us to obtain useful constraints on principal cosmological parameters. Using our 4D Eigenvector 1 formalism we have found a way to effectively isolate quasars radiating near the Eddington limit. If the Eddington ratio is known, under several assumptions it is possible to derive distance independent luminosities. We discuss the main statistical and systematic errors involved, and whether these “standard Eddington candles” can be actually used to constrain cosmological models.  相似文献   

13.
IUE has extended the grasp of ultraviolet astronomy to cover active galaxies and quasars fainter than the sixteenth magnitude. These observations have:(i) provided a diagnostic for the source of ionization in active galaxies,(ii) cast light on the excitation mechanism of the Fe II lines,(iii) shown the broad hydrogen lines in Seyferts and quasars are not in their recombination ratios,(iv) demonstrated the absence of gas in BL Lac objects,(v) supported the gravitational lens explanation of the double quasar,(vi) demonstrated the presence of a hot (30 000 K) black body in active nuclei,(vii) discovered stratification of the ionization conditions in the Broad Line Regions of active nuclei.  相似文献   

14.
The X-ray evolution of the luminosity of normal galaxies is primarily driven by the evolution of their X-ray binary populations. The imprints left by a cosmological evolution of the star formation rate (SFR) will cause the average X-ray luminosity of galaxies to appear higher in the redshift range 1–3. As reported by White and Ghosh [ApJ, 504 (1998) L31] the profile of X-ray luminosity with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. In order to observe the high redshift (z>3) universe in the X-ray band, it is necessary to avoid confusion from foreground field galaxies. We report on the predictions of these models of the X-ray flux expected from galaxies and the implications for the telescope parameters of future deep universe X-ray observatories.  相似文献   

15.
Changes in Eddington accretion ratios are thought to result in X-ray spectral index changes in Galactic binary black hole systems. Objects with higher Eddington ratios have softer X-ray spectra. Can we apply this result to much more massive black hole systems such as QSOs? If so, X-ray observations will give us valuable insight into the physics of QSOs. Among QSOs, X-ray spectral index is part of a large set of correlated optical and UV observational properties, especially optical Fe II and [O III] strengths in the Hβ region. To investigate whether this set of correlations is related to Eddington ratio, we use as probes, BALQSOs that have been suggested to be youthful super-accretors. We conducted infrared spectroscopy of the Hβ rest wavelength region for a sample of BALQSOs and compared line measurements with those for high and low redshift non-BAL QSOs. Hβ line widths and bolometric luminosity are used to calculate QSO black hole masses and Eddington ratios. Our results support the hypothesis that optical Fe II and [O III] line strengths are Eddington ratio indicators in QSO central engines. A possible explanation is that strong Fe II and weak [O III] indicate abundant cold gas that could fuel near Eddington accretion.  相似文献   

16.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   


17.
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open.  相似文献   

18.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

19.
20.
Radio galaxies provide a means to determine the coordinate distance, the luminosity distance, the dimension-less luminosity distance, or the angular size distance to sources with redshifts as large as two. Dimensionless coordinate distances for 55 supernovae and 20 radio galaxies are presented and discussed here. The radio galaxy results are consistent with those obtained using supernovae, suggesting that neither method is plagued by unknown systematic errors. The acceleration parameter q(z) and the expansion rate H(z) or dimensionless expansion rate E(z) can be determined directly from the data without having to make assumptions regarding the nature or evolution of the “dark energy”. The expansion rate E(z) can be determined from the first derivative of the dimensionless coordinate distance, (dy/dz)−1, and the acceleration parameter can be determined from a combination of the first and second derivatives of the dimensionless coordinate distance. A model-independent determination of E(z) will allow the properties and redshift evolution of the “dark energy” to be determined, and a model-independent determination of q(z) will allow the redshift at which the universe transitions from acceleration to deceleration to be determined directly. Determination of E(z) and q(z) may also elucidate possible systematic errors in the determinations of the dimensionless coordinate distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号