首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
氢频标蓝宝石微波腔金红石温度补偿的仿真设计   总被引:1,自引:0,他引:1  
为了降低氢原子频标蓝宝石微波腔的频率温度系数,提出采用介质温度补偿技术。该技术利用负温度系数晶体——金红石补偿蓝宝石由于温度变化而引起的介电常数的变化,通过理论计算比较了补偿前后各参数的变化,最后通过软件仿真来验证理论计算的正确性,并确定补偿介质的引入不影响咂。模式。当补偿介质环高度为5mm时,微波腔的频率温度系数为-28.99kHz/℃,Q值为41648,与实验结果相近。  相似文献   

2.
利用蓝宝石晶体在低温下具有低损耗的特点,设计并研制了本征模式为WGH12,0,0的蓝宝石微波腔。当温度稳定在6.4K时,其Q值能够达到4.0×108。以此微波腔为基础,形成正反馈振荡回路,并根据POUND电路原理对环路中振荡信号的相位进行控制,提高整机稳定度指标。为满足频率互比测试的需求,采用共用一个低温装置的方案,构建了两台低温蓝宝石微波源,一路输出频率为9.204GHz,另一路输出频率为9.205GHz,两路信号混频,并用时间间隔计数器测量差频信号的频率。经计算,低温蓝宝石微波频率源的秒级频率稳定度达到了3.28×10-15。  相似文献   

3.
设计了一种高准确度基准电压源电路,电路采用了电流镜技术,运放的输出作为驱动的同时还作为自身的偏置电路,双极晶体管EB结压降作运放的输入,获得正温度系数的电流IPTAT;同理将电阻的压降和双极晶体管EB结压降作运放的输入,获得负温度系数的电流ICTAT,通过电流的减法运算将在整个温度范围内分两段产生不同的补偿电流INL,进而产生不同的补偿电压,并完成对带隙基准电压的分段线性补偿。由此得到温度系数很小的带隙基准电压。采用TSMC0.18μm1.8/3.31P6MCMOS标准工艺,在1.8V电源下,-40℃~130℃温度范围内,仿真结果显示输出电压的温度系数小于1.88ppm/V,低频时电源电压抑制比为-86dB,功耗为237.5μW。  相似文献   

4.
使用Ansoft HFSS软件分别仿真计算了氢原子频标中标准尺寸微波腔、蓝宝石部分介质充填微波腔和不同金属极片间距的磁控管微波腔,并分析了储存泡对谐振频率的影响,得到极片间距和储存泡对谐振频率的影响趋势,对于实际工作时主要影响谐振频率的极片间距的选择给出了建议。  相似文献   

5.
主要介绍以19.2kHz为例的低频晶体滤波器设计制造的全过程及如何减小低频晶体滤波器的体积。选用衰减特性比较陡的对称两节差接桥式晶体滤波器电路,保证了19.2kHz低频晶体滤波器矩形系数小。  相似文献   

6.
一种新型半导体硅温敏传感器已研制成功。它是以半导体中载流子的迁移率随着温度的升高而减小为工作原理,具有正的温度系数(在20℃时,α≈0.7%/℃),灵敏度高,具有良好的线性,温度范围宽(-55~+200℃),响应快。由于采用了半导体平面工艺,所以可以大批量生产,成本低,稳定可靠。可以应用于工业上的温度测量和控制、家用电器中的测温控温以及医疗卫生、环境监测、气象研究等;还可以应用于电子线路中的温度补偿和过热保护。  相似文献   

7.
本文简要地讨论了采用50MHz三次泛音晶体的温度补偿晶体振荡器,分析了振荡电路,介绍了热敏电阻网络的计算方法。为改进计算而采用了比较简便直观的逐次渐近法。最后,给出了实验电路及测量结果。结果表明补偿后的50MHz晶振在宽温度范围内(-40℃~+60℃)具有±1×10~(-6)的频率稳定度。  相似文献   

8.
提出了基于三次样条曲线插值的温度补偿方法,用这种方法对测压范围为0.013 3×105~3.198 9×105 Pa,温度应用范围为-55~+80℃的高精度谐振筒压力传感器的实验标定结果进行了温度补偿.为加快标定过程,给出了传感器标定点数的减少方案.结果表明,在传感器的标定点数减少2/3的情况下,提出的温度补偿方法的综合误差为0.007 9%,约是基于径向基函数(RBF)神经网络的温度补偿方法的1/2,从而有效减少了传感器的标定成本和工作量.这对于解决高精度压力传感器的温度补偿问题具有一定的理论意义和工程应用价值.   相似文献   

9.
提出了一种新型的以微处理器为核心的AT切温度补偿晶体振荡器 (MCXO)的设计思想 ,说明了其开发系统的原理 ,给出了最后的实验结果。使用该开发系统得到的这种振荡器可以工作在 - 40℃~ 85℃的环境内 ,频率—温度稳定性≤± 5× 10 - 7。  相似文献   

10.
铷频标物理系统的改进研究   总被引:1,自引:0,他引:1  
物理系统是铷频标的核心部件,通过分析影响频率稳定度的因素,对物理系统内部结构进行了改进。改进后的物理系统采用分离滤光的三泡结构,增加了光学滤光技术,此外,物理系统还选用了磁控管微波腔。经测试,改进后的铷频标温度系数为9.7×10-14/℃,频率稳定度约为1×10-12/τ(1s≤τ≤10 000s)。  相似文献   

11.
高性能的被动型铷原子频率标准(以下简称铷频标)主要用于恶劣工作环境等特殊领域,铷频标的准确度和稳定度是卫星定位的两项关键技术,铷频标的稳定度包括短期稳定度和中长期稳定度,而中长期稳定度主要由温度系数决定。本文从改善铷频标温度系数的目的出发,全面梳理和分析了影响铷频标温度系数的主要因素,提出零温度系数等高线图优化法和零光频移灯激励电压优化法,并通过改进物理部分结构热设计等措施,优化了铷频标物理部分的温度系数。经试验验证,结果表明整机温度系数约为-2E-14/℃,铷频标的105s稳定度5.52E-15,改善物理部分温度系数的方法和措施是有效的。  相似文献   

12.
高性能的被动型铷原子频率标准(以下简称铷频标)主要用于恶劣工作环境等特殊领域,铷频标的准确度和稳定度是卫星定位的两项关键技术,铷频标的稳定度包括短期稳定度和中长期稳定度,而中长期稳定度主要由温度系数决定。本文从改善铷频标温度系数的目的出发,全面梳理和分析了影响铷频标温度系数的主要因素,提出零温度系数等高线图优化法和零光频移灯激励电压优化法,并通过改进物理部分结构热设计等措施,优化了铷频标物理部分的温度系数。经试验验证,结果表明整机温度系数约为-2E-14/℃,铷频标的105s稳定度5.52E-15,改善物理部分温度系数的方法和措施是有效的。  相似文献   

13.
高频宽压控晶体振荡器广泛应用于各种接收机和应答机中,工作温度范围通常为-40℃~+85℃。对于该类晶振,极易出现频率温度稳定性相对于其内部石英谐振器明显恶化的现象。对此,从理论上分析了引起恶化的原因,并提出通过合理控制振荡电路的压控范围和石英谐振器的激励功率,可以改善高频宽压控晶振的温频特性。最后,研制并测试了4只102.3MHz压控晶振,结果优于指标要求,充分验证了方法的有效性。  相似文献   

14.
介绍了一种分体对开式高低温发生装置,并详细叙述了其结构组成,测试结果表明高低温发生装置温度范围为-80℃~400℃,温度偏差为±2℃,温度均匀度为2℃,该装置可作为专用实验设备用于力传感器高低温环境下的校准。  相似文献   

15.
研究测控装备机内测试设备计量校准方法,获取机内测试设备技术状态的准确信息,是确保测控装备量值准确可靠的基础。以系统理论为指导,研究测控装备机内测试设备的工作运行机理和计量校准方法,选取某型测控装备,分析其技术要求、确定校准点、校准接口和校准设备,明确计量校准项目和参数,对提出的测控装备机内测试设备计量校准方法进行实验验证,为今后开展机内测试设备计量校准提供了方法和依据。  相似文献   

16.
本文选用SiGe材料低噪声放大芯片,设计了一款(0.1~1.8)GHz小型低功耗超宽带低噪声放大器(LNA)。该LNA采用两级放大结构,负反馈方式实现宽带匹配,级间和输出端匹配采用小阻值电阻提高电路稳定性,电路尺寸为35mm×15mm。测试结果表明:工作频率为(0.1~1.8)GHz,在室温条件下,增益为30dB,噪声系数<0.82dB,增益平坦度<0.5dB,输入输出回波损耗<-10dB,直流功耗为41.8mW;在-40℃低温条件下,增益为32dB,增益平坦度、输入输出回波损耗、直流功耗与室温下一致,噪声系数<0.69dB。设计过程与测试结果验证了本文中使用室温SiGe放大管的S参数计算-40℃温度下该芯片S参数方法的可行性。  相似文献   

17.
本文介绍了利用仿真软件进行抗振晶体振荡器设计的方法,通过建立晶体振荡器结构仿真模型,对其力学特性进行深入细致的分析,并在此基础上对比分析减振材料的剪切模量和被减振物质量对晶体振荡器抗振性能的影响,优化晶体振荡器减振结构。然后,根据仿真设计制做了抗振晶体振荡器,并进行了随机振动试验。结果表明,试验现象与仿真结果基本一致,验证了仿真分析的有效性,且振动下晶体振荡器相位噪声达到-145d Bc/Hz@1k Hz,极大地提高了晶体振荡器的抗振性能。  相似文献   

18.
为了研究真空环境设备内溅射靶温度升高后对30 cm离子推力器的热辐射影响,采用有限元分析的方法,首先对真空舱内的离子推力器羽流分布进行了模拟,在获得羽流对溅射靶造成的温度变化后,进一步分析了溅射靶温度升高对离子推力器温度以及栅极热形变位移所造成的影响.仿真结果显示,推力器羽流可采用定向分子流模型进行描述,羽流在真空舱内...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号