首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
角闪烁误差是导引头寻的制导的主要误差来源,基于高分辨力雷达的单脉冲测角算法可有效改善角闪烁现象。现有的研究大多基于幅度加权的思想,利用距离单元的幅度信息进行加权平滑处理。本文在现有高分辨测角算法的基础上,结合高分辨一维距离像的位置信息,提出了一种新的角度信息处理方法。该算法充分利用了距离像有效单元的目标信息,提高了角度测量精度。仿真实验表明该算法对角闪烁有较好的抑制作用。  相似文献   

2.
单脉冲二次监视雷达(MSSR)已成为我国空中交通管理(ATM)系统的重要组成部分,不仅具备常规雷达的跟踪定位、目标识别和高度确认功能,同时还具有更快的数据获取速度及更高的测量精度,大大提高ATM的能力。振幅和差式单脉冲测角技术是通过比较和差通道的幅度而得到,因此,雷达接收机的动态范围内其振幅特性和相位特性必须保持一致。但在实际应用系统中,由于雷达零件制造存在公差,部件使用过程中不可避免地会逐渐老化从而引起参数的改变,元器件使用过程因温度变化引发电路失调和失配,以及外界杂波的相互影响等,雷达接收机通道之间幅相不一致难以避免。  相似文献   

3.
与空时二维自适应滤波兼容的单脉冲测角新方法   总被引:2,自引:0,他引:2  
吴仁彪 《航空学报》1996,17(4):410-416
针对机载相控阵雷达系统提出了一种空时二维自适应单脉冲测角方法 ,当存在阵元和通道幅相误差时它仍具有较高的测角精度。还给出了一种稳健的自适应和、差波束增益归一化方法 ,并讨论了所提方法的简化兼容实现方案。最后给出了基于高保真雷达杂波模拟数据的仿真实验结果  相似文献   

4.
对单脉冲比相测角系统和影响雷达接收机幅相一致性的因素进行分析,总结了解决幅相不一致性的措施;对某型接收机移相电路进行理论计算和实际测试,得出其相位和幅度不一致的补偿方法。  相似文献   

5.
李保国  赵宏钟  付强 《航空学报》2005,26(4):490-495
 频率步进雷达合成高分辨距离像时对速度补偿的精度要求很高,而采用高分辨距离间隔像处理则可以大大降低这种要求。首先分析了高分辨距离间隔像成像的一些问题;然后阐述了基于高分辨距离间隔像的单脉冲雷达测角机理,并且提出了3 种过采样条件下的单脉冲雷达距离间隔像测角算法,进行了计算机仿真,结果表明距离间隔像交叉项选大测角方法性能优于其它两种方法。  相似文献   

6.
将空域广义单脉冲测角算法扩展至空时二维,提出基于降维STAP的自适应单脉冲测角算法,通过实时自适应修正鉴角曲线来降低角误差,实现杂波环境下的目标角误差估计,并且计算复杂度较低,从而保证机载平台在强杂波环境下对目标的稳定跟踪.仿真结果验证了该方法的有效性与性能优势.  相似文献   

7.
在单脉冲测角体制下,由于多径回波信号的干扰,极大地降低了雷达低空目标仰俯角跟踪精度,甚至丢失目标。通过对多路径反射环境模型分析,得出了岸、海基单脉冲雷达低空目标跟踪时仰俯角测量误差的产生原因,提出将传统的多目标分辨算法(C2算法)应用于低角多径环境下目标俯仰角的跟踪测量,并在不同多径反射环境下对不同高度、不同飞行速度和飞行方向的目标进行了仿真,得到良好的仿真结果,表明该算法可较大地提高俯仰角跟踪测量精度。通过对仿真结果的分析,验证了该算法在低空目标跟踪中的有效性和可行性。  相似文献   

8.
建立了用地面测控站引导交会时,不同交会角条件下测量误差引起的交会脱靶量计算模型和交会概率计算模型。重点讨论了单站雷达测量、双站雷达测量时,以最大交会概率为优化目标时的最优交会角问题,并确定了雷达测站位置与最优交会角的关系。仿真结果表明,最优交会角的恰当选择能显著提高逆轨卫星交会概率。  相似文献   

9.
以某型单脉冲测量雷达为研究对象,深入分析研究幅相一致性修正的必要性和修正原理,通过理论分析与公式推导,经过大量的试验验证,提出一种基于目标模拟的单脉冲测量雷达无塔幅相修正方法。该方法实现后,已成功应用于该型单脉冲测量雷达,解决了传统幅相修正方法受外界因素影响大的技术难题,同时降低了建造成本和维护难度,取得了良好的军事和经济效益。  相似文献   

10.
针对月面着陆过程中可能存在的着陆器倾斜而导致的结构损坏甚至颠覆等问题,提出了一种用于月面着陆的基于知识辅助的单脉冲前视成像方法。首先结合月面着陆器平台搭载的双通道雷达进行了理想情况下的单脉冲成像分析,然后分析了影响单脉冲成像性能的内在机理,并对雷达接收通道的不一致性进行了建模。在此基础上,将单脉冲成像问题转化为通道相位误差估计问题;结合天线方向图的先验信息,通过对实际天线方向图与理想方向图数据信息的对比,利用最小二乘方法估计出两者之间的相位差异,并求得改进的单脉冲测角曲线。最后对接收到的回波数据进行相位补偿,就可以获得高分辨的月面着陆区域单脉冲成像结果。地球机载实测数据处理结果表明此方法可以获得高分辨的前视成像结果,可应用在月面着陆过程中。  相似文献   

11.
Angle estimation for two unresolved targets with monopulse radar   总被引:2,自引:0,他引:2  
Most present-day radar systems use monopulse techniques to extract angular measurements of sunbeam accuracy. The familiar "monopulse ratio" is a very effective means to derive the angle of a single target within a radar beam. For the simultaneous estimation of the angles of two closely-spaced targets, a modification on the monopulse ratio was derived in (Blair and Pearce, 2001), while (Sinha et al., 2002) presented a maximum likelihood (ML) technique via numerical search. In this paper it is shown that the ML solution can in fact be found explicitly, and the numerical search of ((Sinha et al., 2002) is unnecessary. However, the ML solution requires the signal to noise ratio (SNR) for each target to be known, and hence we generalize it so it requires only the relative SNR. Several versions of expectation maximization (EM) joint angle estimators are also derived, these differing in the degree to which prior information on SNR and on beam pattern are assumed. The performances of the different direction-of-arrival (DOA) estimators for unresolved targets are studied via Monte Carlo, and it is found that most have similar performance: this is remarkable since the use of prior information (SNR, relative SNR, beam pattern) varies widely between them. There is, however, considerable performance variability as a function of the two targets' off-boresight angles. A simple combined technique that fuses the results from different approaches is thus proposed, and it performs well uniformly.  相似文献   

12.
Many radar systems use the monopulse ratio to extract angle of arrival (AOA) measurements in both azimuth and elevation angles. The accuracies of each such measurement are reasonably well known: each measurement is, conditioned on the sum-signal return, Gaussian-distributed with calculable bias (relative to the true AOA), and variance. However, we note that the two monopulse ratios are functions of basic radar measurements that are not entirely independent, specifically in that the sum signal is common to both. The effect of this is that the monopulse ratios are dependent, and a simple explicit expression is given for their correlation; this is of considerable interest when the measurements are supplied to a tracking algorithm that requires a measurement covariance matrix. The system performance improvement when this is taken into account is quantified: while it makes little difference for a tracking radar with small pointing errors, there are more substantial gains when a target is allowed to stray within the beam, as with a rotating (track-while-scan) radar or when a single radar dwell interrogates two or more targets at different ranges. But in any case, the correct covariance expression is so simple that there is little reason not to use it. We additionally derive the Cramer-Rao lower bound (CRLB) on joint azimuth/elevation angle estimation and discover that it differs only slightly from the covariance matrix corresponding to the individual monopulse ratios. Hence, using the individual monopulse ratios and their simple joint accuracy expression is an adequate and quick approximation of the optimal maximum likelihood procedure for single resolved targets.  相似文献   

13.
The problem of implementing a monopulse tracking radar is considered when three beams are used rather than the customary four. Signal processors are developed for both amplitude and phase comparison radar cases and the functional form is given for the general case (a combination or hybrid case). Accuracy is investigated by applying the Cramer-Rao inequality. General results are given for the maximum theoretical accuracy of estimating target amplitude, phase, and position angles when the radar is of the amplitude comparison type. Equations sufficient for obtaining accuracies in the phase comparison and combination cases are included.  相似文献   

14.
The off-axis angle indicated by a conventional monopulse radar is only the real part of a "complex indicated angle." The presence of unresolved targets or multipath distorts the real part (causing an erroneous angle indication) and also produces an imaginary part, which can easily be measured by processing the normally unused quadrature-phase component of the difference signal. Under certain conditions the angles, amplitude ratio, and relative phase of two unresolved targets can theoretically be determined by meas urements of the complex indicated angle on two pulses separated by a short interval. In the special case of multipath, known relationships between the unresolved target and image theoretically permit determination of target elevation with a single pulse.  相似文献   

15.
Adaptive digital beamforming for angle estimation in jamming   总被引:2,自引:0,他引:2  
A radar digital beamforming (DBF) architecture and processing algorithm is described for nulling the signal from a mainlobe electronic jammer and multiple sidelobe electronic jammers while maintaining monopulse angle estimation accuracy on the target. The architecture consists of a sidelobe jamming (SLJ) cancelling adaptive array (AA) followed by a mainlobe jamming (MLJ) canceller. A mainlobe maintenance (MLM) technique or constrained adaptation during the sidelobe cancellation process is imposed so that the results of the SLJ cancellation process do not distort the subsequent mainlobe cancellation process. The SLJ signals and the MLJ signals are thus cancelled sequentially in separate processes. This technique was developed for improving radar processing in determining the angular location of a target, and specifically for improving the monopulse technique by maintaining the accuracy of the target echo monopulse ratio in the presence of electronic jamming by adaptive suppression of the jamming signals before forming the monopulse sum and difference beams  相似文献   

16.
This paper proposes a novel statistical prediction of monopulse errors (Levanon, 1988) for a radar Swerling III-IV target embedded in noise or noise jamming where multiple observations are available. First, the study of the maximum likelihood estimator (MLE) of the complex monopulse ratio for a Swerling III-IV target embedded in spatially white noise allows us to extend the use of the MLE practical approximate form introduced by Mosca (1969) for Swerling 0-I-II cases. Afterward, we derive analytical formulas for both the mean and variance of the MLE in approximate form conditioned by the usual detection step performed on the sum channel of a monopulse antenna. Last, we provide a comparison of target direction of arrival (DOA) estimation performance based on monopulse ratio estimation as a function of the Swerling model in the context of a multifunction radar.  相似文献   

17.
吴迪  朱岱寅  田斌  朱兆达 《航空学报》2012,33(10):1905-1914
单脉冲技术通过比较单个脉冲多路回波信号的信息实现对目标角度位置的精确测量,广泛运用于跟踪雷达中。在雷达成像中引入单脉冲技术可以显著提高前视这一合成孔径雷达(SAR)与多普勒波束锐化(DBS)成像盲区雷达图像的清晰度。本文着重对单脉冲成像算法的成像效果分析方法进行研究。从单脉冲和差比的概率密度函数出发,提出了目标图像位置失真、分辨率以及图像信噪比3个对图像质量进行衡量的指标。分析了决定这3个指标的系统及外部环境参数,并给出了相应的计算方法。最终通过数值积分以及Monte-Carlo仿真实验对理论分析结果进行了验证。  相似文献   

18.
Detection of Target Multiplicity Using Monopulse Quadrature Angle   总被引:1,自引:0,他引:1  
The feasibility of using the indicated quadrature angle of arrival of a monopulse radar to discriminate a single target from multiple targets, separated in angle within a radar resolution cell, is investigated. The analysis is performed for steady (fixed) and Rayleigh fluctuating targets which cover a broad range of target characteristics. In both cases, the interfering signals due to noise and clutter in the sum and difference monopulse channels are assumed to be independent, zero-mean Gaussian processes. Detection and false alarm probabilities are evaluated analytically and the receiver operating characteristics are obtained for both fixed and fluctuating target cases. It is shown that multiple targets can be discriminated from a single target condition by integrating the indicated monopulse quadrature angle of arrival from several independent pulses. It is also shown that the probability of detecting multiple targets increases as the fluctuation in the target radar cross section decreases, approaching the fixed amplitude case in the limit.  相似文献   

19.
Monopulse DOA estimation of two unresolved Rayleigh targets   总被引:3,自引:0,他引:3  
This paper provides for new approaches to the processing of unresolved measurements as two direction-of-arrival (DOA) measurements for tracking closely spaced targets rather than the conventional single DOA measurement of the centroid. The measurements of the two-closely spaced targets are merged when the target echoes are not resolved in angle, range, or radial velocity (i.e., Doppler processing). The conditional Cramer Rao lower bound (CRLB) is developed for the DOA estimation of two unresolved Rayleigh targets using a standard monopulse radar. Then the modified CRLB is used to give insight into the boresight pointing for monopulse DOA estimation of two unresolved targets. Monopulse processing is considered for DOA estimation of two unresolved Rayleigh targets with known or estimated relative radar cross section (RCS). The performance of the DOA estimator is studied via Monte Carlo simulations and compared with the modified CRLB  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号