首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
运载火箭总体设计是一项涵盖多学科的系统工程。在总体设计过程中,需要综合考虑弹道、气动、姿控等多个学科的设计方案及其相互间的耦合关系。多学科优化(MDO)方法通过不同的单级或多级模型对多学科系统进行近似建模,再利用相应数值算法迭代计算,从而逼近全局最优解。系统回顾了多学科优化方法在国内外的发展脉络,择要介绍了应用于总体设计的经典多学科优化模型架构、软件平台和实际算例,探讨了多学科优化方法在我国运载火箭总体设计中的应用价值和发展前景。  相似文献   

2.
基于整体级概念的多级固体运载火箭设计与优化   总被引:1,自引:0,他引:1  
针对多级固体运载火箭小型化需求,采用整体级概念(ISC)进行总体方案改造和优化设计.描述了2种ISC概念的特点,以某三级常规方案固体运载火箭为基准,通过利用级间的剩余空间,完成ISC方案改造.建立了运载火箭的整体级发动机动力计算模型、气动计算模型和弹道计算模型,并结合任务指标要求,提出了运载火箭的总体参数优化模型.在相同的任务条件下,完成了常规方案和2种ISC方案的优化.结果表明,引入ISC概念可将运载火箭体积缩小15%~20%,起飞总重缩小1%~1.5%,满足了总体指标要求,达到了运载火箭小型化设计目的.  相似文献   

3.
目前,基于模型的系统工程(MBSE)在工业界尤其在复杂装备领域,受到广泛关注。利用MBSE技术,发达国家在提升航天产品制造效率、生产力及装备的开发和部署上已经走在了世界前列。因此,深入理解MBSE概念,发展适用于我国航天工业的MBSE技术迫在眉睫。对MBSE概念及发展现状进行了深入分析,并结合初步实践经验,提出了航天MBSE技术发展方向和建议。  相似文献   

4.
简要介绍了系统和系统工程的概念 ,阐述了标准化系统工程概念的形成和几个发展阶段 ,对标准化系统工程方法论的主要内容进行了详细论述。  相似文献   

5.
基于Matlab/Simulink的运载火箭6自由度运动仿真   总被引:9,自引:0,他引:9  
李辉  敬晓刚  徐利梅 《宇航学报》2005,26(5):616-619,652
以CZ系列运载火箭为对象,提出了一种基于MATLAB/Simulink的运载火箭6自由度运动仿真的方法。采用模块化的建模思想,建立决定箭体运动相关部分的数学模型,包括空气动力模型、发动机推力模型、六自由度运动学模型,然后对各个子模块分别采用Simulink建立单元仿真模型。通过对单元仿真模型的集成得到了火箭6自由度运动的仿真模型,基于该仿真模型进行了单元仿真。对比实测数据,证明提出的方法可行,模型建立正确。  相似文献   

6.
李东  杨云飞  胡鹏翔  张欢  程兴 《宇航学报》2021,42(2):141-149
针对新一代运载火箭结构动力学与控制系统耦合强烈、严重影响火箭的飞行稳定问题,提出一种基于多体动力学虚拟样机建模与仿真的方法,有效解决运载火箭姿态动力学模型地面难以验证的困难.首先阐述了在运载火箭姿态动力学分析中应用多体虚拟样机的基本思路;然后对多体动力学模型与传统火箭姿态动力学模型在建模原理上的差异进行分析,指出引入多...  相似文献   

7.
执行器故障下的运载火箭非奇异终端滑模容错控制   总被引:2,自引:0,他引:2       下载免费PDF全文
马艳如  王青  胡昌华  周志杰  梁小辉 《宇航学报》2020,41(12):1553-1560
针对存在未知外部干扰和执行器卡死故障的运载火箭,提出了一种基于非奇异终端滑模面的姿态跟踪控制算法。首先,建立了考虑干扰和执行器卡死故障的运载火箭姿态控制系统多输入多输出系统模型;然后定义了运载火箭姿态跟踪系统模型,针对定义的模型,设计了一种非奇异终端滑模面,使得系统在执行器故障情况下仍能较为精确地跟踪参考信号。基于李雅普诺夫函数证明了运载火箭姿态跟踪控制系统的稳定性和有限时间收敛特性。数值仿真检验了本文基于非奇异终端滑模运载火箭姿态跟踪控制算法的有效性。  相似文献   

8.
针对传统的控制系统极限偏差设计方法导致运载火箭余量大、总体性能下降的问题,综述了基于概率的控制系统设计方法的国内外研究现状,论述了运载火箭控制系统概率设计的基本思想及设计流程,基于概率密度函数建模理论,建立了通过实际控制指令来控制概率密度函数拟合权值的状态空间,并基于最小二乘方法对状态空间中的参数进行了辨识,进而建立了密度函数成型控制模型,提出了基于最优控制理论的运载火箭控制器设计方法,最后通过仿真验证了理论方法的有效性,为我国运载火箭控制系统的精细化设计提供了理论依据。  相似文献   

9.
李岩  蔡远文 《航天控制》2005,23(4):64-69
简要介绍了PXI总线技术的发展情况,阐明了PXI技术的优越性及其在军事航天领域应用的重要意义。参考现有产品资料,设计了基于PXI总线技术的运载火箭测试发射控制系统的硬件组成和软件框架。该技术的应用将进一步推动运载火箭测试发射系统的智能化、通用化和小型化,从而提高运载火箭的整体性能。  相似文献   

10.
中国现已独立自主地研制了 12种不同型号的长征系列运载火箭。为使读者概要了解运载火箭技术 ,本刊将对宇航出版社出版的《航天技术与系统工程丛书》的〈运载火箭卷〉部分内容分期摘编 ,介绍运载火箭概况、总体设计要求以及主要分系统组成与功能等。本期对运载火箭的组成、技术指标和基本概念等作一简要介绍。  相似文献   

11.
Rapid development of Chinese commercial launch vehicles brings new challenges under the traditional systems engineering(TSE) working method. A new model-based systems engineering(MBSE) working method was proposed for Smart Dragon 1(SD-1), which is a low-cost commercial launch vehicle developed by the China Academy of Launch Vehicle Technology(CALT). Based on the characteristics of a commercial launch vehicle, the system model based on information cards was established. Through a problem-oriented working method, risk identification and management, the process of Card-MBSE was utilized and verified by the success of the maiden flight of SD-1. This paper introduces a new method and reference for the development of low-cost and high-reliability launch vehicles.  相似文献   

12.
运载火箭智慧控制系统技术研究   总被引:2,自引:0,他引:2       下载免费PDF全文
总结了国内外先进运载火箭控制系统的特点,结合我国新一代运载火箭的现状,提出目前我国运载火箭控制系统发展亟待解决的问题。在此基础上,提出了适应现阶段智能高可靠需求的自主轨道规划技术、在线故障辨识技术、姿控喷管隔离重构技术和全程四元数控制技术,所提技术可有效提高控制系统可靠性,使全箭在面对非灾难性故障时具有较强的自主性和适应性。  相似文献   

13.
《Acta Astronautica》2010,66(11-12):1706-1716
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   

14.
基于模型的系统工程在航天器研制中的研究与实践   总被引:4,自引:0,他引:4  
针对基于文档的传统航天器研制模式,存在着信息表示不准确、信息查找/更改困难等不足,指出基于模型的系统工程(MBSE)是解决这些问题的有效途径。根据MBSE的定义,分析其内涵;在继承国外实践成果的基础上,在航天器研制过程中进一步创新MBSE的理论,并应用MBSE理论指导航天器研制,以推动系统工程理论和实践的发展。  相似文献   

15.
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   

16.
我国航天运输系统60年发展回顾   总被引:4,自引:0,他引:4       下载免费PDF全文
航天运输系统包括一次性运载火箭、重复使用运载器、轨道转移运载器3个领域,目前一次性运载火箭仍是我国满足进入空间需求的主体。我国运载火箭起步于20世纪60年代,经过半个世纪的发展,共研制了17种运载火箭、9种上面级,具备发射低、中、高不同轨道和不同有效载荷的能力。对我国航天运输系统60年发展历程和主要成就与不足进行了总结。  相似文献   

17.
基于模型的系统工程方法在载人航天任务中的应用探讨   总被引:1,自引:0,他引:1  
针对基于文档的航天任务设计中设计数据分散、一致性差、跟踪难度大等问题,引入了基于模型的系统工程(MBSE)方法。首先,介绍了MBSE方法理念,即通过构建图形化的模型来支持系统的需求捕获、设计、分析、验证和确认等全生命周期活动。然后,给出了MBSE方法的一般工作流程,即先构建系统的需求模型,用于指导功能模型、物理架构模型等的构建,按照事先制定好的逻辑规则建立模型间的关系,依靠模型间的关系实现设计过程中的关联性分析、参数查询等工作。最后,应用MBSE方法于载人飞船交会对接任务中。结果表明,此方法改善了人员沟通,提高了设计效率,降低了设计风险,可为MBSE方法在航天任务设计中的进一步应用提供参考。  相似文献   

18.
China's space technology has gradually improved from the early stages' introduction, absorption and re-innovation based on backward design to independent innovation based on forward design. It is necessary to develop a new approach of systems engineering to improve the quality and efficiency of space systems design considering the large number of original design problems expected in the future. Adopting Model-Based Systems Engineering(MBSE) and Digital Twin method are important development initiatives in the field of modern engineering design. In the initial phase of system design, it is necessary to generate firm system architecture models based on the needs of stakeholders. The quality of the system design in this phase has a great impact on the detailed design and implementation for the subsequent system, and also plays an important role in the performance, development progress and cost of the whole system. Through the collaboration of cross-professional teams, modeling and model execution, comparing the model execution with expected results, MBSE has enabled digital model-level verification and validation before test verification and validation based on physical products, thus improving the design exactness, completeness and greatly reducing design errors or defects. This paper explores the logical ideas behind modeling of system architectures in order to promote the adoption of MBSE in the field of space systems.  相似文献   

19.
运载火箭新型地面测试发控系统构想   总被引:4,自引:0,他引:4  
张晨光  杨华  杨军 《宇航学报》2005,26(3):249-252
为了提高我国地面测试发控系统整体水平,在借鉴和继承国内外成熟型号地面测试发控系统优秀设计思想的基础上,结合现代运载火箭技术需求,通过对总体设计、任务和功能分析、框架组建等方面的分析和论述,提出了新型运载火箭地面测试发控系统方案构想。此方案在总体设计思想、系统框架结构设计、应用模式上提出新的思路,对于适应未来运载火箭发射要求提供了技术途径。  相似文献   

20.
Some key aspects and criteria tasks for ensuring an acceptable reliability and safety level for complex technical systems are discussed in the view of successful operation of a launch complex, at the stage of Launch Vehicle (LV) preparation. The standards and principles of adequate characteristics for launch site core technological systems are defined. The tasks for evaluation the probability of faultless operation for the systems, their reliability a posteriori, and safety barriers formation are described. The model of the pre-launch phase is presented as a random process, in the form of “simple Poisson flow”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号