共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Akioka H. Ishibashi T. Kikuchi E. Sagawa T. Nagatsuma 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2537-2541
In Japan, Communications Research Laboratory engages in operational space environment information services as National Forecasting Center and Regional Warning Center of ISES. Data from local observations and data collected via internet from domestic and foreign institutes are used for the daily operational forecast. Fundamental research on space weather issues has been carried out at several institutes and universities, including STE Laboratory and NASDA. In this presentation, an overview of current space weather forecast operations and a system for information outreach in Japan will be presented. Current and future observation programs from ground-base and space will be also briefly reviewed. 相似文献
2.
Kyle Copeland Herbert H. Sauer Frances E. Duke Wallace Friedberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order. 相似文献
3.
S. Watari 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1445-1449
Progress in information technology has enabled to collecting data in near real-time. This significantly improves our ability to monitor space weather conditions. We deliver information on near real-time space weather conditions via the internet. We have started two collaborations with space weather users. One is a measurement of geomagnetically induced current (GIC) of power grids in collaboration with a Japanese power company. The other concerns radiation hazards for aircrews. The radiation exposure level for aircrews was been determined by the Japanese government by the end of 2005. The proposed upper limit is 5 mSV a year. We are actively seeking ways to contribute to this subject. Our activities at the Japanese space weather center are reported in this paper. 相似文献
4.
H. Mavromichalaki A. Papaioannou C. Plainaki C. Sarlanis G. Souvatzoglou M. Gerontidou M. Papailiou E. Eroshenko A. Belov V. Yanke E.O. Flückiger R. Bütikofer M. Parisi M. Storini K.-L. Klein N. Fuller C.T. Steigies O.M. Rother B. Heber R.F. Wimmer-Schweingruber K. Kudela I. Strharsky R. Langer I. Usoskin A. Ibragimov A. Chilingaryan G. Hovsepyan A. Reymers A. Yeghikyan O. Kryakunova E. Dryn N. Nikolayevskiy L. Dorman L. Pustil’nik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage. 相似文献
5.
Balázs Zábori Attila Hirn Pál Bencze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The main point of the paper is to use the simultaneous measurements of the energetic particle flux by TriTel and those of electron density by a Langmuir probe to study the question of to what extent solar electromagnetic and corpuscular radiation (galactic cosmic rays, particle precipitation from the radiation belts) are responsible for the ionization of the atmosphere. The electron density measured by the Langmuir probe is the sum of the ionization produced by the solar electromagnetic radiation and that due to the corpuscular radiation. The ionization produced by the solar electromagnetic radiation may be computed. The flux of energetic particles in an energy range may be determined by taking the difference between the threshold energy of the TriTel telescopes and the energy corresponding to the local cut-off rigidity. As the ESEO satellite will have a quasi-polar and circular orbit, the cut-off rigidity will change from low to high latitudes, thus enabling the assignment of different energy bands for the telescopes. Thus, it will be possible to determine which energy bands of particle produce ionization at different latitudes. 相似文献
6.
L.I. Dorman A.V. Belov E.A. Eroshenko L.I. Gromova N. Iucci A.E. Levitin M. Parisi N.G. Ptitsyna L.A. Pustilnik M.I. Tyasto E.S. Vernova G. Villoresi V.G. Yanke I.G. Zukerman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2530-2536
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models. 相似文献
7.
Kyle Copeland William Atwell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):665-671
There is considerable speculation about the effects at aircraft altitudes resulting from extreme solar proton events. The ground level event (GLE) of 23 February 1956 (GLE 5), remains the largest solar proton event of the neutron monitor era in terms of its influence on count rates at monitors near sea level. During this GLE the count rate was increased by as much as 4760% (15-min average) at the Leeds monitor relative to the count rate from galactic cosmic radiation (GCR). Two modern models of the event cumulative solar proton spectrum for this event, a 6-parameter fit in energy and a 4-parameter Band fit in rigidity, are compared with 1-h of GCR at solar minimum. While effective doses calculated with CARI-7A for both models at low geomagnetic cutoff rigidities are indeed high when compared with GCR and can exceed recommended exposure limits, both GLE spectra exhibit a much stronger dependence on cutoff rigidity than GCR, and a larger fraction of the dose from neutrons. At locations with cutoff rigidities above 4.2 and 6.4?GV, respectively, the GLE effective doses are smaller than the GCR hourly dose. At locations with cutoff rigidities above about 4?GV, GCR was the dominant source of exposure in 10?h or less at all altitudes examined. This suggests that if a similar event occurs in the future, low- and mid-latitude flights at modern jet flight altitudes could be well-protected by Earth’s magnetic field. 相似文献
8.
It is established that the large-scale and global magnetic fields in the Sun's atmosphere do not change smoothly, and long-lasting periods of gradual variations are superseded by fast structural changes of the global magnetic field. Periods of fast global changes on the Sun are accompanied by anomalous manifestations in the interplanetary space and in the geomagnetic field. There is a regular recurrence of these periods in each cycle of solar activity, and the periods are characterized by enhanced flaring activity that reflects fast changes in magnetic structures. Is demonstrated, that the fast changes have essential influencing on a condition of space weather, as most strong geophysical disturbances are connected to sporadic phenomena on the Sun. An explanation has been offered for the origin of anomalous geomagnetic disturbances that are unidentifiable in traditionally used solar activity indices. Is shown, main physical mechanism that leads to fast variations of the magnetic fields in the Sun's atmosphere is the reconnection process. 相似文献
9.
LIU Siqing ZHONG Qiuzhen GONG Jiancun SHI Liqin CHEN Dong MIAO Juan CAI Yanxia BAI Meng MA Wenzhen LI Zhitao LIU Fanghua CHEN Yanhong 《空间科学学报》2018,38(5):781-787
Strategic Priority Research Program on Space Science has gained remarkable achievements. Space Environment Prediction Center (SEPC) affiliated with the National Space Science Center (NSSC) has been providing space weather services and helps secure space missions. Presently, SEPC is capable to offer a variety of space weather services covering many phases of space science missions including planning, design, launch, and orbital operation. The service packages consist of space weather forecasts, warnings, and effect analysis that can be utilized to avoid potential space weather hazard or reduce the damage caused by space storms, space radiation exposure for example. Extensive solar storms that occurred over Chinese Ghost Festival (CGF) in September 2017 led to a large enhancement of the solar energetic particle flux at 1 AU, which affected the near Earth radiation environment and brought great threat to orbiting satellites. Based on the space weather service by SEPC, satellite ground support groups collaborating with the space Tracking, Telemetering and Command system (TT&C) team were able to take immediate measures to react to the CGF solar storm event. 相似文献
10.
11.
D.B. Contreira F.S. Rodrigues K. Makita C.G.M. Brum W. Gonzalez N.B. Trivedi M.R. da Silva N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2455-2459
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented. 相似文献
12.
航天器异常与空间环境 总被引:3,自引:0,他引:3
本文研究考查了靠近或在地球同步轨道上的SCATHA、TDRS-1卫星以及GPS、GOES卫星组等的各自10年左右运行时间中,空间环境所导致航天器异常的发生率的年分布特征,月分布特征,地方时分布特征以及不同类型的发生率分布特征。结果表明,由于不同空间环境因素对航天器作用不同,引起异常类型不一样,因此,太阳长周期和短月,地方时周期活动对航天器异常发生率影响无简单的统一规律特征;长周期中的单粒子事件是由 相似文献
13.
R.T. James McAteer Peter T. GallagherPaul A. Conlon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this. 相似文献
14.
K. Kudela M. Minarovjech V. Ruin M. Rybanský V. Kollr 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2368-2371
The cross correlation of daily values of coronal hole areas at the eastern limb of the Sun constructed from the ground based measurements of the green coronal line and daily mean cosmic ray intensities over long time periods shows asymmetry: at the maximum of their 27 day cycle, cosmic ray intensities are better correlated with coronal hole areas 66 days before than with the current value. This indicates the potential for using coronal emission data as one of the parameters for eventual prediction of the level of cosmic ray flux at neutron monitor energies. 相似文献
15.
Theogene Ndacyayisenga Jean Uwamahoro K. Sasikumar Raja Christian Monstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(4):1425-1435
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time. 相似文献
16.
17.
Marius S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues. 相似文献
18.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(6):2967-2976
A new water-Cherenkov radiation detector, located at the Argentine Marambio Antarctic Base (64.24S-56.62 W), has been monitoring the variability of galactic cosmic ray (GCR) flux since 2019. One of the main aims is to provide experimental data necessary to study interplanetary transport of GCRs during transient events at different space/time scales. In this paper we present the detector and analyze observations made during one full year. After the analysis and correction of the GCR flux variability due to the atmospheric conditions (pressure and temperature), a study of the periodicities is performed in order to analyze modulations due to heliospheric phenomena. We can observe two periods: (a) 1 day, associated with the Earth’s rotation combined with the spatial anisotropy of the GCR flux; and (b) 30 days due to solar impact of stable solar structures combined with the rotation of the Sun. From a superposed epoch analysis, and considering the geomagnetic effects, the mean diurnal amplitude is 0.08% and the maximum flux is observed in 15 h local time (LT) direction in the interplanetary space. In such a way, we determine the capability of Neurus to observe anisotropies and other interplanetary modulations on the GCR flux arriving at the Earth. 相似文献
19.
Deborah Scherrer Morris Cohen Todd Hoeksema Umran Inan Ray Mitchell Philip Scherrer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise. 相似文献
20.
A. Maghrabi K. Kudela A. Aldosari M. Almutairi M. Altilasi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(5):1672-1681
In this study downward longwave (LW) atmospheric radiation data for the period of 2014–2020 were used to search for short-term periodicities using fast Fourier transform (FFT). Several local peaks in the power spectrum density were found and established. The time series exhibits a series of significant peaks (exceeding the 95% confidence limit), such as at 273 days, 227 days, 200 days, 178 days, 157 days, 110 days, 120 days, 87 days, 73 days, 53–56 days, 35–30 days, 25–27 days, 21 days, 13 days, and 9–10 days.Moreover, cosmic ray data from KACST muon detector and the Oulu neutron monitor, as well as the data for the solar radio flux at 10.7 cm (F10.7 cm), Dst index, and solar wind speed for the same period as the LW data, were used to look for common cyclic variations and periodicities matching those found in the LW radiation. This was done to investigate the possible effect of the solar activity parameters on LW radiation. Several common periodicities were observed in the spectra of all the variables considered, such as 227 days, 154–157 days, 25–27 days, and 21 days. Some of the periodicities found in the LW radiation spectrum can be attributed to the modulation of the cosmic ray intensity by solar activity. Others are attributed to the disturbances in the interplanetary magnetic field. Based on the spectral results, we suggest that the solar signals may directly or indirectly affect the variations of the downward longwave radiation, which in turn may affect climate change. 相似文献