首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since 1988 high sensitivity dosimeter-radiometer “Liulin” has been installed on board the MIR space station. Device measured absorbed dose rate and flux of penetrating particles. Results of measurements showed that after powerful solar proton events (SPE) September–October, 1989 and March, 1991 additional quasistable radiation belts were formed in the near earth space within the interval L=1.8−3.0. These “new” belts were observed as an additional maximums in flux (and sometimes dose) channels when crossing the SAA region. “New” belts were quasi stable and existed at least several months, decaying slightly after SPE. Dose to flux ratio analysis showed that major components of these belts were energetic electrons and protons arising in connection with preceding SPEs.  相似文献   

2.
The estimation of radiation quality factor in space flights is a serious problem of space dosimetry. The solution of this problem is based on LET-spectra measurements. The “NAUSICAA”-device installed on the “MIR” station has a detector with a large geometric factor, that gives the possibility of measuring LET-spectra with sufficient statistic in relatively short time interval and hence the corresponding Q. LET-spectra are accumulated through 24 hour periods and equivalent dose (H), absorbed dose (D), quality factor and flux (F) are measured every 10 minutes. The obtained data permit the estimate of the diurnal Q and Q in South Atlantic Anomaly. These values vary in the range of 1.4 – 2.2. The analysis of these values including their comparison with the calculated results is given in this paper.  相似文献   

3.
As an important milestone in the exploration of Mars and small bodies, a new generation space vehicle “Phobos-Grunt” is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around a Phobos sample return mission and follow up missions targeted to study some main asteroid belt bodies, NEOs and short period comets. The principal constraint is use of the “Soyuz-Fregat” rather than the “Proton” launcher to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the mission's energetic capabilities, as well as highly autonomous on-board systems. Basic criteria underlining the “Phobos-Grunt” mission scenario, scientific objectives and rationale including Mars observations during the vehicle's insertion into Mars orbit and Phobos approach maneuvers, are discussed and an opportunity for international cooperation is suggested.  相似文献   

4.
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events.  相似文献   

5.
In one type of space weather, the sun emits intermittent enhancements of solar energetic particle (SEP) fluxes. A fraction of these fluxes that reach the envelope of geospace can be injected into the magnetospheric particle confinement region after transiting the geomagnetic tail domain, the polar cleft/cusp region, or directly through the front side magnetopause. Common for these processes is that they provide inward diffusive “leakage” whenever the immediate external flux environment is more intense than in the outer trapping region. Conversely, following injection events outward leakage can also occur whereby the confinement region becomes a source of Magnetosheath particles. Numerical modeling has been carried out to investigate the effects on the ambient fluxes in the Earth's radiation belts from this effect.  相似文献   

6.
We have analyzed the trapped electron data (0.19–3.2 MeV) taken by the Japanese OHZORA satellite operated at 350–850 km altitude in polar orbit during 1984–1987 near solar minimum. The electron observations reveal all the global attributes of the quiet-time electron radiation belts, such as the South Atlantic Anomaly, the electron “slot”, and the outer radiation belt regions. The electron data are in general agreement with the NASA AE-8 electron model, but there are differences, particularly with respect to distinctive local-time variations in the slot region. In this paper, we present results from analyses of variations of the electron pitch angle distributions with local time, L-shell and altitude.  相似文献   

7.
Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with “open” designs or distant orbits. At 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture ( 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.  相似文献   

8.
9.
Electron flux data from LANL geostationary spacecrafts were statistically treated and ordered in a special magnetic coordinate system (effective L-coordinate and MLT). The data treating procedure allowed to obtain the dynamics of quasi-trapped electrons of different energies on effective L-shells ranging from 6.6 to 7.0. It was found that in quiet conditions a stable fine spatial structure of quasi-trapped electrons exists with maximum of fluxes near L = 6.78 and MLT=12. This structure may be looked at as an asymmetrical “mini-belt”. The position of the maximum depends on electron energy and changes with magnetic activity. The dynamics of this mini-belt for both quiet and disturbed periods is illustrated and discussed. During isolated magnetic storms the mini-belt maximum shifts in a regular manner outward and inward; a diffusion wave of quasi-trapped particles propagates from outside of the geostationary orbit and serves as a source of new particles for the mini-belt. The azimuthal geometry of this diffusion wave extracted from experimental data is illustrated. The possible role of the “mini-belt” is discussed in relation with well-known “anomalous” dynamics of the inner radiation belt.  相似文献   

10.
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.

These investigations will allow one to determine:

• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;

• differential energy spectra of fast neutrons (1–20 MeV);

• estimation of absorbed and equivalent doses from charged and neutral component CR;

• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.

The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”.  相似文献   


11.
Japanese future space programs for high energy astrophysics are presented. The Astro-E2 mission which is the recovery mission of the lost Astro-E has been approved and now scheduled to be put in orbit in early 2005. The design of the whole spacecraft remains the same as that of Astro-E, except for some improvements in the scientific instruments. In spite of the five years of delay, Astro-E2 is still powerful and timely X-ray mission, because of the high energy resolution spectroscopy (FWHM 6 eV in 0.3–10 keV) and high-sensitivity wide-band spectroscopy (0.3–600 keV). The NeXT (New X-ray Telescope) mission, which we propose to have around 2010, succeeds and extends the science which Astro-E2 will open. It will carry five or six sets of X-ray telescopes which utilize super-mirror technology to enable hard X-ray imaging up to 60–80 keV. In mid-2010s, we would participate in the European XEUS mission, which explores the early (z>5) “hot” universe.  相似文献   

12.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   

13.
More than 20 years ago V.P. Shabansky suggested that the magnetic system installed aboard the satellite, could be used as a physical instrument for studying the processes which occur in the near Earth space. The corresponding space scales of an artificial “magnetosphere”—“magnisphere”—are 10 m in the experiment with relatively small magnets in the ionosphere and 100 m in the solar wind. The corresponding similarity criteria are estimated. The possible scheme of the experiment with a superconducting magnet (magnetic moment 105 A · m2) installed aboard the satellite is considered. The experimental complex includes a number of systems for measuring the fluxes of charged particles in a wide energy range, DC electric and magnetic fields, the electromagnetic fields in different frequency bands (from X-rays to radio). The scientific objectives are discussed in detail.  相似文献   

14.
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models.  相似文献   

15.
Some periods in the sunspot number reconstruction composed by Hoyt and Schatten [Hoyt, D.V., Schatten, K.H. Group Sunspot Numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219, 1998. Reprinted with figures in Sol. Phys. 181, 491–512, 1998], are based on very few records. For example, there are only a few solar observations during the years 1736–1739. In this paper we intend to improve the reliability of the sunspot numbers reconstruction developed by Hoyt and Schatten for this 4-years period based on information about solar activity published in three journals of that epoch: “Philosophical Transactions”, “Histoire de l’Académie Royale des Sciences”, and “Nova Acta Eruditorum”. We were able to identify 42 papers with solar observations, including 30 with relevant information on sunspots. Based upon this new outlook, a reconstruction of the monthly solar activity for these years is proposed.  相似文献   

16.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

17.
The spectra of neutrons >10 MeV and gamma-rays 1.5–100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex “SALUTE-7”-“KOSMOS-1686”, are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm−2 s−1 for neutrons, 0.8 cm−2 s−1 for gamma-rays at the equator and 1.2 cm−2 s−1, 1.9 cm−2 s−1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from “CORONAS-I” data are near those for albedo particles.  相似文献   

18.
The analysis of the baloon and rocket measurement data reveals the changes of temperature in the polar and subpolar middle atmosphere with approaching of the magnetopause of the magnetosphere to the Earth. The data of the most observation points show the notable warming of the middle atmosphere in this situation, but there were some stations (“Vostok” in Antarctica and “Frobisher Bay” in Arctic) where the reverse dependence between these parameters was registered. The experimental data show that the total ozone content (TOC) decreases with approaching of the magnetopause to the Earth under both atmosphere warming or cooling at high altitudes. The drop in the TOC values is closely connected to increase of atmospheric electric field magnitude. The obtained results possibly could be explained in framework of the global electric circuit model.  相似文献   

19.
Rendezvous Missions to Comets lead to low velocities at the nucleus of the comet. The resulting impact velocity of the cometary dust on a target will range between 10 and 400 m/s. The dust particle which impacts on a target can be collected for a subsequent in-situ analysis.

The collection efficiency of a target depends in addition to obvious geometrical conditions upon the surface of the target. The surface characteristics can be divided into two groups:

• “dirty” surfaces, covered with silicate or hydrocarbon compounds (for example vacuum grease),

• “clean” surfaces, like gold (with additional sputtering).

This paper deals with the experimental and theoretical investigation of the collection efficiency of “clean” targets. Laboratory experiments are described which were conducted at the Technische Universität München, Lehrstuhl für Raumfahrttechnik, and the Max-Planck-Institut für Kernphysik, Heidelberg. In both experiments an electromagnetic accelerator is used to accelerate different types of dust in vacuum to velocities between 10 and 400 m/s.

The target is then examined under the microscope and a secondary ion mass spectrometer (which is a model of the laboratory carried on board of the spacecraft for “in situ” analysis). The adhesion of the dust grains at the target is evaluated experimentally in an ultracentrifuge.  相似文献   


20.
A method based on the Lyapunov stability theory has been developed for studying the stability of crystallization by capillary shaping techniques (including Czochralski, Stepanov, EFG, Verneuil and floating zone methods). The preliminary results of the analysis of stability shows that the crystallization by capillary shaping technique under microgravitation conditions is more stable in some cases than under the action of gravitation. To get deeper into details of the capillary shaping technique under microgravitation conditions, we have carried out model experiments using two immiscible liquids of equal density and crystallization of sapphire in terrestrial conditions with small Bond number. The experiments on the copper crystallization were realized in the high-altitude rockets. Our experiments on indium crystallization carried out in the orbital space probe “Salyut” yielded cylindrical specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号