首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reviews the three major policy issues likely to arise from an SSP system: environmental safety, frequency allocation and prevention of interference with other frequency-using activities. Supporters of SSP must make sure that their case is heard clearly at the ITU, but they must also do more to promote public awareness of the technology's potential benefits in order to counter inappropriate use of the Precautionary Principle by anti-technology groups. The strengthening of standard-setting groups world-wide will also assist this process.  相似文献   

2.
To meet the future needs of energy on Earth, the transmission of solar power from space is being extensively studied. Since the power station will occupy a position in the geostationary orbit and will use radio frequency spectrum for transmission of energy to Earth, the relative benefits of space solar power and space communications should be considered. The resource allocation of orbit-spectrum to a power station requires a sacrifice from space communications as they both utilize similar limited resources. The power station is to energy what communication is to information. While the cost of energy is going up, the cost of information processing, storage, sharing and transmission is decreasing. Also, increased means of communication are used as a measure of energy conservation. With the advent of computer communication and the Large Scale Integrated (LSI) microprocessors, the technique of multiple access, message switching and satellite switching can be cost-effectively combined. The computer-satellite communication will allow information resource sharing among large numbers of users besides the conventional application of space communications. Since space communication means work effectively in many other areas where ultimate energy use and conservation is possible, the space solar power will not be able to compete or substitute on the basis of equality and social benefits. But, as the transmission technology is similar for both areas, the R & D effort for solar power will certainly increase efficiency and reduce cost for space communications.  相似文献   

3.
Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based “sandwich” module prototypes. The implementation status and testing results of the prototypes are reviewed.  相似文献   

4.
Because the need for energy is global, and many energy networks are already interdependent, because no one country has sufficient technological capability or sufficient funds to provide a space solar powered solution on its own, and because any such solution will require international regulation, international coordination will be vital to any attempt to produce energy for Earth from space. This will be made easier by the fact that work on the subject has already been widely publicized and distributed and cooperative efforts have already been made. Various coordinating approaches are described and the need to forge partnerships between government, industry and academia — with greater involvement of all non-space groups concerned with energy — is emphasized. A “terracing approach” to the actual implementation of SPS is suggested and outlined.  相似文献   

5.
The use of solar radiation by means of concentrating solar mirror systems, such as parabolic and spheric configurations, mainly is an engineering problem. A decisive characteristic for the optimisation of a complete system with turboelectric power conversion is the thermal cycle applied. Besides the Carnot process, here taken up into the study as an ideal comparative process, suitable processes for the technological realisation are the Brayton process and the Rankine process. The Brayton process is a typical gas turbine process using only the gaseous phase. The Rankine process is a steam engine process using liquid and gaseous phase.The work in hand shows how such solar systems with turboelectric conversion are optimised with respect to their specific weight (kg/kWe) and how the distance to the sun as well as technological data enter into the analysis.As expected, the Carnot cycle as an ideal comparative process for both types of systems shows the best results for the optimum specific mass of the system. Regarding the real processes, the Rankine cycle shows more favourable characteristics than the Brayton cycle. The difference of the specific masses of the real processes mainly results from the different thermal conditions at the radiator.The influence of the distance to the sun is as expected. The nearer to the sun the solar power system operates, the better is the optimum specific mass of the system. For distances to the sun between 0.3 and 1.0 AU the spheric system shows a better behaviour than the parabolic system. For distances to the sun greater than 2.0 AU the parabolic system shows better behaviour of the specific weight. In the region between 1 and 2 AU the better optimum specific mass of the system belongs to the technological data used in the analysis.  相似文献   

6.
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.  相似文献   

7.
M.Y.S. Prasad   《Space Policy》2005,21(4):243-249
This article briefly presents the historical background, as seen by ISRO and India, to the growing problem of space debris. It describes the technical aspects of ISRO's activities in the field of space debris, and the grey areas in technical understanding, which may impede legal discussions. Analysis of the cost and technical aspects of reorbiting satellites from geostationary Earth orbit (GEO) is detailed, since this is an important area for India and other developing countries. The article also briefly describes ISRO's views of the applicability and relevance of the existing space treaties to a possible future legal regime for space debris. Debates are currently taking place in the UN and other multilateral fora on the subject of space debris and the situation is dynamic. The main aim of this article is to inform readers of ISRO's and India's position in the UN on the subject of space debris, in terms of its technical, political and legal aspects. Certain issues of importance from the legal point of view, though not of immediate urgency, are also discussed.  相似文献   

8.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

9.
空间太阳能电站的关键技术及发展建议   总被引:4,自引:2,他引:4  
1968年美国的P. Glaser博士最早提出空间太阳能电站(SSPS)概念构想。作为一个巨大的空间系统,空间太阳能电站的技术难度非常大,其真正实现预计还需要几十年的时间。文章通过对国外典型空间太阳能电站概念及其关键技术进行比较分析,在此基础上初步提出空间太阳能电站关键技术体系和发展建议。  相似文献   

10.
The aim of the analysis is to determine and to compare the specific mass of nuclear and solar power plants for application in space depending on technological data as well as on data subject to the mission.On the basis of the known theory of Ruppe and Blumenberg[1–3], nuclear power plants with turboelectric generators as well as solar-thermal power plants with parabolic or spheric mirrors are being analysed. The following thermodynamic processes are applied: the Rankine process, the Brayton process and—as an ideal comparative process—the Carnot process. An important parameter of the analysis for nuclear power plants is the net electric power, for the solar-thermal power plant the distance to the sun is of importance.  相似文献   

11.
Roger X. Lenard   《Space Policy》2001,17(4):285-289
The development and exploitation of nuclear power and propulsion represent certain didactic imperatives for human civilization. Among these are economic, epistemological, moral and commercial propositions. Developing space nuclear power and propulsion represents one future; the choice of not to pursue the course barring some breakthrough in physics represents a dramatically different future. The author argues that the time is now fortuitous for deployment and operation of nuclear propulsion and power, primarily nuclear electric propulsion, at significant levels, employing figures of merit that transcend simple cost models used to justify nuclear power sources in the past. The proposition is examined, in the light of US and UN restrictions, to ascertain how best to proceed. The author argues that viewpoints of certain vocal albeit uninformed public interest groups are typically self-serving and generally categorically incorrect; it can be asserted that these same groups do not truly represent the public interest at all. It is, therefore, necessary to present an even-handed assessment of both sides of the argument to determine the virtues and liabilities of embarking on such a developmental path. Given the imperatives mentioned, the author argues that nuclear power and propulsion for space systems is a societal necessity.  相似文献   

12.
Those in the space community interested in deploying space solar power (SSP) need to know whether it would make economic sense. This article aims to develop a conceptual model of the economic value of SSP as a source of power to in-space activities, such as spacecraft and space stations. We offer several estimates of the value based on interviews and published data, discuss technological innovations that may compete with or be complementary to SSP, and consider alternative institutional arrangements for government and the private sector to provide SSP.  相似文献   

13.
空间太阳能电站所提供的将是高功率的电磁能量,在执行无线供电的过程中,将会在被供电设备上再次激励起不同频率的电磁波,对人体健康产生一定的威胁。对于低频的电磁波可以将人体整体等效为一个简易模型,分析电磁波对人体健康的影响。但是,当频率逐渐升高,其波长将和人体的局部组织尺寸可比拟,此时必须采用真实的人体模型才能更精确地分析电磁波对人体的影响。为此,文章研究58GHz频率下,基于真实手臂模型的比吸收率。利用平面波照射真实手臂模型,分析手臂表面以及透射到各个关键局部区域体积内的SAR值,可为高频率情况下电磁波对人体健康的影响提供一定的参考。  相似文献   

14.
15.
Michel Bour  ly 《Space Policy》1990,6(4):323-331
Transatlantic cooperation has played a key part in developing Europe's capabilities in space, but this has been despite serious drawbacks in the legal status of the agreements concerned. This article traces the history of transatlantic space relations and highlights the misunderstandings that have arisen. These stem from the precedence given in the USA to domestic laws and financial interests over all international agreements except formal treaties, which are generally not considered suitable for scientific and technical agreements. The article concludes with a discussion of how more stable and equitable relationships could be achieved.  相似文献   

16.
空间太阳能电站微波能量传输需要具备超大规模的相控阵列波束形成和超高精度的波束指向控制能力。采用大尺寸的基本相控电单元能够缩减天线阵列规模和微波发射通道数目,从而显著降低微波能量发射系统的构造和组装成本。然而,相控单元的尺寸越大,对天线模块的结构刚性和姿态控制精度要求越高。基于天线阵列的结构化构型设计,提出超大规模回复反射阵列的结构模块和相控电单元的尺寸分析模型,推导得到结构模块姿态偏差、电单元尺寸要求和能量传输效率的近似关系及其解析表达式,可供作为空间太阳能电站微波传能天线阵列及其波束控制方案设计的参考依据。  相似文献   

17.
Man's quest to get into space is hindered by major problems (e.g., system-development and capital costs, expense of putting mass into orbit, trapped-radiation belts, and environmental impact of a large increase in rocket launches). A multi-purpose low-earth-orbit system of rings circling the earth – the “LEO ARCHIPELAGOTM” – is proposed as a means of solving or bypassing many of them. A fiber-optic ring about the earth would be an initial testing and developmental stage for the Ring Systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A low-earth-orbit-based space-elevator system, “Sling-on-a-RingTM”, is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., space solar power, radiation, and space-debris dampers, sun shades, and permanent LEO habitation) are greatly expanded.This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, potential applications, and trade-offs associated with an earlier model. The impact of Colossal Carbon Tubes, CCT, a new material with high tensile strength, extremely-low density, and other favorable properties, and other new technologies (e.g., solar-powered lasers, power beaming to near-space and earth, and thermal-control systems) on the development of associated LEO-Ring systems is also explored. The material's effect on the timeline for the system development indicates the feasibility of near-term implementation of the system (possibly within the decade). The Sling-on-a-Ring can provide a less-expensive, environment-friendly mode of access to space. This would pave the way (via eventual operation at >1000 t per day by 2050) for large scale development of space-based technologies.  相似文献   

18.
Building an organization and management structure to create, launch, utilize and protect a satellite solar power energy system will require a global policy for the beneficial use of SSP. The fundamental organizational tasks are: (1) R&D, achieved through a project organization characterized by the integrated management of applied science, development research and construction engineering; (2) investment, generated by a series of groups creating financial vehicles for public and private investment; (3) transmission and distribution, characterized by attention to an engineering and maintenance process emphasizing high reliability; and (4) crisis response, demanding readiness for instant response to potential internal or external scenarios. A differentiated global organization spanning the long timeframe of SSP will need to have a central management core representative of all parts of the organization, with the capacity for self-renewal and re-adaptation. To be successful over its long timeframe, the SSP organization will need to build continuity and public confidence through intergenerational communication, public education, and community outreach. Integrating structures must be created at all levels of the organization, and should encompass joint work tasks and information-sharing among both industrial and government members. Developmental and alliance partners who support the formation and financing of a differentiated satellite solar power organization will share commensurately in the technologies and competencies that are created.  相似文献   

19.
20.
The American idea of a Solar Power Satellite was proposed for the first time in 1968 by Peter Glaser in a famous article in Science. This concept has since been the subject of many theoretical studies, and of some limited practical studies (mainly about microwave energy transmission) in the USA with funding from NASA and the Department of Energy (DOE). Some evaluations have been also conducted in Western Europe, particularly within the European Space Agency (ESA). But very little is generally known about the attitude towards SPS of the second main space power: the USSR. Soviet literature on SPS is much less abundant, but it does exist. Very interesting articles on the subject have been written by leading Soviet space experts. Some of these articles are analysed here, and the practical meanings of the ex[ressed opinions, generally very favourable, are investigated in view of the growing Soviet space capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号