首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

2.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   

3.
Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement.  相似文献   

4.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   

5.
Recent advances in technologies required for a "Salad Machine".   总被引:1,自引:0,他引:1  
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.  相似文献   

6.
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada’s contribution of the Higher Plant Compartment of the European Space Agency’s MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar “salad machine” (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.  相似文献   

7.
A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4–6 with Pilot Laboratory compartment volume of 185 m3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m2 to 4.0 m2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10–25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification for the flight-qualified modules.  相似文献   

8.
The origination of duration and distance requirements on planetary mobility systems (generally, rovers) are reviewed in detail. It is found that a ‘clean’ flow down from scientific objectives to requirement to capability is rarely presented. Rather, the historical record shows that the capability of emerging designs has been adopted post-hoc as a requirement, simple comparative superiority to predecessor missions has been invoked in competitive situations, or the requirement has been driven by capability of other elements of a mission architecture, such as delivery precision or astronaut life support. These deviations from the idealized systems engineering process have nonetheless resulted in missions that have generally been considered highly successful.  相似文献   

9.
The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.  相似文献   

10.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


11.
Modelling canopy photosynthesis in response to environmental conditions.   总被引:3,自引:0,他引:3  
Physiological models in the plant and crop sciences provide a means of integrating different aspects of the system, in particular the interaction between plant processes and environmental factors. This paper focuses on the response of canopy photosynthesis, including adaptation, to environmental conditions. Adaptation is likely to be important when considering controlled ecological life support systems since physiological characteristics are affected by past as well as current environmental conditions. In particular, the level of photosynthetic enzymes in a plant is generally greater for plants grown in high irradiance levels than for similar plants grown in low irradiance. The models have been developed to apply to 'normal' growing conditions, although the principles will apply to closed bioregenerative systems.  相似文献   

12.
The Porous Tube Plant Nutrient Delivery System or PTPNDS (U.S. Patent #4,926,585) has been under development for the past six years with the goal of providing a means for culturing plants in microgravity, specifically providing water and nutrients to the roots. Direct applications of the PTPNDS include plant space biology investigations on the Space Shuttle and plant research for life support in Space Station Freedom. In the past, we investigated various configurations, the suitability of different porous materials, and the effects of pressure and pore size on plant growth. Current work is focused on characterizing the physical operation of the system, examining the effects of solution aeration, and developing prototype configurations for the Plant Growth Unit (PGU), the flight system for the Shuttle mid-deck. Future developments will involve testing on KC-135 parabolic flights, the design of flight hardware and testing aboard the Space Shuttle.  相似文献   

13.
In order to determine a required plant cultivation area which can sustain human life in a closed environment, the material circulating measurement system including a Closed-type Plant Cultivation Equipment (CPCE) in which the metabolic data of plants can be accurately measured has been constructed. According to results from cultivation experiments using rice, the harvest index was 29.9% for 110 days, and the required crop area to supply food, oxygen and water for one person was calculated to be about 111m2, 36m2 and 0.9m2, respectively.  相似文献   

14.
Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with “open” designs or distant orbits. At 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture ( 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.  相似文献   

15.
Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in maintaining soil physical and chemical properties, thereby affecting net primary productivity (NPP), and in the case of contained environments, the quality of the life support system. We have been using 3 controlled-environment facilities (CEF's) that incorporate different levels of soil biological complexity and environmental control, and differ in their resemblance to natural ecosystems, to study relationships among plant physiology, soil ecology, fluxes of minerals and nutrients, and overall ecosystem function. The simplest system utilizes growth chambers and specialized root chambers with organic-less media to study the physiology of plant-mycorrhizal associations. A second system incorporates natural soil in open-top chambers to study soil bacterial and fungal population response to stress. The most complex CEF incorporates reconstructed soil profiles in a "constructed" ecosystem, enabling close examination of the soil foodweb. Our results show that closed ecosystem research is important for understanding mechanisms of response to ecosystem stresses. In addition, responses observed at one level of biological complexity may not allow prediction of response at a different level of biological complexity. In closed life support systems, incorporating soil foodwebs will require less artificial manipulation to maintain system stability and sustainability.  相似文献   

16.
空间高等植物培养装置用于中国天宫二号空间实验室开展微重力条件下高等植物生长机理研究.该装置由高等植物培养模块、生命保障模块、实时在线检测模块和返回单元等功能单元组成,可实现高等植物空间长周期培养,在轨启动生物实验,实时在线观察和荧光监测,水分循环利用及营养供给,模拟太阳长短日照周期控制与检测,环境温度测量与控制,CO2浓度调节,有害气体去除及航天员回收部分样品等功能.   相似文献   

17.
The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development.  相似文献   

18.
The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research.  相似文献   

19.
The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July–September) provides an average photosynthetic photon flux of 161.09 μmol m−2 s−1 (August) and 76.76 μmol m−2 s−1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m−2 s−1 (May) and 339.32 μmol m−2 s−1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4–5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.  相似文献   

20.
Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号