首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As part of the PROTECT experiment of the EXPOSE-E mission on board the International Space Station (ISS), the mutagenic efficiency of space was studied in spores of Bacillus subtilis 168. After 1.5 years' exposure to selected parameters of outer space or simulated martian conditions, the rates of induced mutations to rifampicin resistance (Rif(R)) and sporulation deficiency (Spo(-)) were quantified. In all flight samples, both mutations, Rif(R) and Spo(-), were induced and their rates increased by several orders of magnitude. Extraterrestrial solar UV radiation (>110?nm) as well as simulated martian UV radiation (>200?nm) led to the most pronounced increase (up to nearly 4 orders of magnitude); however, mutations were also induced in flight samples shielded from insolation, which were exposed to the same conditions except solar irradiation. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Mutations isolated from flight and parallel mission ground reference (MGR) samples were exclusively localized to Cluster I. The 21 Rif(R) mutations isolated from the flight experiment showed all a C to T transition and were all localized to one hotspot: H482Y. In mutants isolated from the MGR, the spectrum was wider with predicted amino acid changes at residues Q469K/L/R, H482D/P/R/Y, and S487L. The data show the unique mutagenic power of space and martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars.  相似文献   

3.
4.
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8?mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.  相似文献   

5.
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).  相似文献   

6.
Outer space, a valuable natural resource, has to be managed in order to improve safety, efficiency and economy of space missions and to protect the space environment for future exploration and use. There are several aspects of the management of outer space, few in a satisfactory state, others receiving little attention from the international community, and still others not yet addressed at all. Some of the tasks following from the above requirements may have to be performed by an international space organization, created, possibly and preferably, within the UN system of organizations.  相似文献   

7.
MICROSCOPE is a French space mission for testing the weak equivalence principle (WEP). The mission goal is the determination of the Eötvös parameter η with an accuracy of 10?15. The French space agency CNES is responsible for the satellite which is developed and produced within the Myriade series. The satellite's payload T-SAGE (Twin Space Accelerometer for Gravitation Experimentation) is developed and built by the French institute ONERA. It consists of two high-precision capacitive differential accelerometers. One accelerometer is used as reference sensor with two test masses of platinum, the science sensor contains a platinum and a titanium proof mass. The detection of the test mass movement and their control is done via a complex electrode system. As a member of the MICROSCOPE performance team, the German department ZARM will be involved in the data analysis of the MICROSCOPE mission. For this purpose, mission simulations and the preparation of the mission data evaluation in close cooperation with the French partners CNES, ONERA and OCA are realised. The development status of the simulation tool which will represent the complex spacecraft dynamics and all error sources in order to design and test data reduction procedures is presented and some features are discussed in detail.  相似文献   

8.
载人深空探测任务航天医学工程问题研究   总被引:2,自引:1,他引:1  
航天医学工程问题关系到载人深空探测任务中的人员生存及健康。文章从人员长期生存的生命保障、变重力生理效应及防护、地外环境效应与防护、人员生理健康监测与维护、人员心理健康等方面的问题入手,分析了问题产生的原因及解决的必要性,并提出了解决思路,为后续深入开展相关关键技术的攻关提供参考。最后,以载人月球基地任务为案例,提出了生命保障、变重力防护、辐射及月尘防护、生理及心理健康监测及维护等问题的解决方案。  相似文献   

9.
This paper reports the main characteristics of the deep space transponder (DST) equipment that has been designed, developed and tested by Thales Alenia Space—Italy (TAS-I) for the European Space Agency (ESA) BepiColombo mission to Mercury.  相似文献   

10.
Using economic incentives to control costs is a new concept for space missions. The basic tenets of market-based approaches run counter to typical centralized management techniques often utilized for complex space missions. NASA's Cassini mission to Saturn used a market trading system to assist the Science Instrument Manager in guiding the development of the spacecraft's science payload. This system allowed science instrument teams to trade resources among themselves to best manage their resources (mass, power, data rate, and budget). Thus, Cassini Project management was no longer responsible for adjudicating and reallocating resources that result from instrument development problems. Instrument teams were responsible for directly managing their resources and if they ran into a development problem it was their responsibility to resolve their problem by descoping or through the use of a 'resource exchange.' Under the trading system, instrument cost growth was less than 1% and the total payload mass was under its allocation by 7%. This result is in stark contrast to the 50%–100% increases in these resources on past missions.  相似文献   

11.
This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.  相似文献   

12.
舱外航天服热试验外热流模拟方法研究   总被引:1,自引:2,他引:1  
出舱行走所必需的舱外航天服具有复杂外表面形状,其空间外热流极其复杂。文章对舱外航天服在热试验中所采用的外热流模拟方法进行了对比分析研究,结合航天服的特点对热试验中外热流模拟的方式进行了探讨, 论证了用接触式电加热片及红外加热笼两种外热流施加方式的可行性,并通过分析的手段对不同热试验方法中施加的热流和太空中的热流大小及分布进行了对比。  相似文献   

13.
The first artificial earth satellite, Sputnik 1, was launched on 14 October 1957 and proceeded to orbit the Earth blithely unconcerned with the political boundaries below. It was apparent that space activities had international implications. In the United Nations, the question of space activities was first raised in 1957 in the context of the debate on disarmament. In 1958, the ‘Question on the Peaceful Uses of Outer Space’ was placed on the agenda of the General Assembly, which adopted a resolution establishing an Ad Hoc Committee on the Peaceful Uses of Outer Space (COPUOS).  相似文献   

14.
RD Lorenz 《Astrobiology》2012,12(8):799-802
Abstract Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K. Key Words: Planetary protection-Planetary environments-Ice-Titan. Astrobiology 12, 799-802.  相似文献   

15.
The speedily expanding Internet is in the process of transforming the technological, economic, and policy bases for nation-state regulation of telecommunications, including space-based satellite networks. Deployment of the packet-switched Internet has accelerated the liberalization of telecommunications markets and has led to far-reaching regulatory restructuring and policy shifts regarding state ownership and control of networks and information flows. As space-based GMPCS networks become integral parts of the globalizing Internet infrastructure, the state-centric legal paradigm requiring state “authorization and continuing supervision” of space activities by “non-governmental entities” stipulated under Article VI of the OST and associated treaties forming the outer space legal regime will be called increasingly into question. This paper examines the technological, economic/trade, and security issues that question whether the existing state-centric paradigm for regulating Internel-based GMPCS satellite systems will remain in legal phase with emerging liberalized regulatory regimes for terrestrial Internet-based infractructures.  相似文献   

16.
《Acta Astronautica》1999,44(2-4):193-199
Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near- interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.  相似文献   

17.
David Livingston   《Space Policy》2003,19(2):279-94
The aim to increase commercial economic activity in space will be facilitated by the introduction of a code of ethics for the businesses involved, something that is now commonplace on Earth. A proposed such code—comprising 12 principles—is presented below. It covers areas such as environmental stewardship of space, the promotion of honest dealings, making safety an important concern, ensuring a free-market economy and disclosure of conflicts of interest or political contributions.  相似文献   

18.
行星保护是每一个开展深空探测活动的国家都应遵守的国际化行为。基于我国深空探测任务中行星保护相关的微生物控制需求,文章首先分析了深空探测器在AIT(总装、集成和测试)阶段负载的微生物主要种类和来源,之后综述NASA和ESA采用的干热灭菌(DHMR)、气相过氧化氢(VHP)等微生物灭菌技术在行星保护任务中的应用与研究现状,最后对加快微生物灭菌技术研究以支持我国未来的行星探测任务提出建议。  相似文献   

19.
To understand the chemical behavior of organic molecules in the space environment, amino acids and a dipeptide in pure form and embedded in meteorite powder were exposed in the PROCESS experiment in the EXPOSE-E facility mounted on the European Technology Exposure Facility (EuTEF) platform on board the International Space Station (ISS). After exposure to space conditions for 18 months, the samples were returned to Earth and analyzed in the laboratory for reactions caused by solar UV and cosmic radiation. Chemical degradation and possible racemization and oligomerization, the main reactions caused by photochemistry in the vacuum ultraviolet domain (VUV, wavelength range 100-200?nm for photon energy from 6.2 to 12.4?eV) were examined in particular. The molecules were extracted and derivatized by silylation and analyzed by gas chromatograph coupled to a mass spectrometer (GC-MS) to quantify the rate of the degradation of the compounds. Laboratory exposure in several wavelength ranges from UV to VUV was carried out in parallel in the Cologne Deutsches Zentrum für Luft- und Raumfahrt (DLR) Center and Centre de biophysique moléculaire (CBM) laboratories. The results show that resistance to irradiation is a function of the chemical nature of the exposed molecules and the wavelengths of the UV light. The most altered compounds were the dipeptide, aspartic acid, and aminobutyric acid. The most resistant were alanine, valine, glycine, and aminoisobutyric acid. Our results also demonstrate the protective effect of meteorite powder, which reemphasizes the importance of exogenic contribution to the inventory of prebiotic organics on early Earth.  相似文献   

20.
Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008-2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400-700?nm), UVA (315-400?nm), UVB (280-315?nm), and UVC (<280?nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1?Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m(-2) for PAR, 269.03 MJ m(-2) for UVA, 45.73 MJ m(-2) for UVB, or 18.28 MJ m(-2) for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号