首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the beginning of space era, a new branch of medicine has arisen and has been developing along with human exploration of outer space. And even though space medicine mainly faces the same problems as traditional medicine--cosmonauts health care and their high efficiency--this branch, has its own features, associated with the unusual factors of space flight, of which weightlessness is the major one. During the development of manned cosmonautics (duration of a human stay in space has reached already 438 days), methods of cosmonauts medical support and monitoring of their condition have been developed, knowledge of human possibilities and methods of process of organism adaptation to various and frequently severe conditions of external environment have increased. All this led to the fact that nowadays space medicine can become useful for improvement of human health care not only in space but also on the Earth. Moreover, the problem of implementation of cosmonautics achievements, and in particular of space medicine, in practice of public health care presents one of the most important issues concerning human health care. It is also connected with public opinion which is more and more concerned about the efficiency of significant expenses on space activities, especially lately. People often are set by the questions: what has space given, what fruits has space research provided to mankind, which results of this research can be used on the Earth already today for improvement of their life, for discussion of many difficult earthly problems? In terms of using cosmonautics possibilities, its achievements for health care and treatment, it is possible to define a few branches, in which purposeful studies are carried out.  相似文献   

2.
What is it about the Moon that captures the fancy of humankind? A silvery disk hanging in the night sky, it conjures up images of romance and magic. It has been counted upon to foreshadow important events, both of good and ill, and its phases for eons served humanity as its most accurate measure of time. This paper discusses the Moon as a target for human exploration and eventual settlement. This paper will explore the more than 50-year efforts to reach the Moon, succeeding with space probes and humans in Project Apollo in the 1960s and early 1970s. It will then discuss the rationales for spaceflight, suggesting that human space exploration is one of the least compelling of all that might be offered. The paper will then discuss efforts to make the Moon a second home, including post-Apollo planning, the Space Exploration Initiative, and problems and opportunities in the 2004 Vision for Space Exploration, and cancellation of that program in 2010.  相似文献   

3.
The central difficulties confronting us at present in exobiology are the problems of the physical forces which sustain three-dimensional organisms, i.e., how one dimensional systems with only nearest interaction and two dimensional ones with its regular vibrations results in an integrated three-dimensional functionality. For example, a human lung has a dimensionality of 2.9 and thus should be measured in m2.9. According to thermodynamics, the first life-like system should have a small number of degrees of freedom, so how can evolution, via cycles of matter, lead to intelligence and theoretical knowledge? Or, more generally, what mechanisms constrain and drive this evolution? We are now on the brink of reaching an understanding below the photon level, into the domain where quantum events implode to the geometric phase which maintains the history of a quantum object. Even if this would exclude point to point communication, it could make it possible to manipulate the molecular level from below, in the physical scale, and result in a new era of geometricised engineering. As such, it would have a significant impact on space exploration and exobiology.  相似文献   

4.
Dr. Olgierd Wo?czek died in August, 1982 in Warsaw. From 1971 he edited the scientific-popular Polish bimonthly Astronautyka and also, from 1973, the scientific journal of the Polish Astronautical Society (PAS) “Post?py Astronautyki” (Progresses in Astronautics). He was one of the founders of PAS (1954), then its General Secretary for 10 years, and later the deputy of the President of PAS for 15 years.He was very active also in the field of the scientific research in astronautics and space physics. The scope and width of his knowledge can be seen in his 22 books and 34 papers on astronautics and space physics, 10 books and 14 papers on nuclear physics and other subjects. He published also several hundred papers in popular journals, and took part several hundred times in radio and television programmes. His PhD-degree (1963) was based on his research in nuclear spectroscopy. But astronautics became the main interest and aim of his life.He was corresponding member of the IAA in Paris, and a member of several IAA and IAF committees, spoke at more than 20 IAF Congresses and was an honorary member of several foreign astronautical societies.Dealing with almost all astronautics and space physics on popular level, his scientific activity of qualitative character can be placed in four subjects: (1) nuclear energy in rocketry; (2) impact of astronautics on science, our civilization and mankind; various non-selected problems in astronautics; (3) evolution of matter in the Universe; planetology; (4) life in the Universe.During his several last years Dr. Wo?czek was dealing mainly with subjects (3) and (4). Scientific papers of Dr. Wo?czek according to the above classification are reviewed. A full list of Dr. Wo?czek's scientific papers are included.  相似文献   

5.
Bluth BJ 《Acta Astronautica》1984,11(2):149-153
Serious recommendations have been made about the development and mutual manning of an international space station. The achievements of ESA show that such international organizations can work successfully in high technology projects, although with problems. However, other work on isolated and confined environments suggests that sustained cooperation in the unique quarters of a space station for long durations may have special inter-cultural difficulties that need to be examined before any long term commitment is made. Also, a careful look at international activities in general suggests that in spite of the fact that there are many potential benefits for cooperative activities, there are also many international obstacles. If such an effort is to be embarked upon, it is important to look candidly at the problems that can be generated from the multi-national social, economic, and cultural systems in order to do serious and direct analyses. Such a project might be strangled by unanticipated and complex problems of a socio-cultural nature.  相似文献   

6.
Space agencies and governments have been long striving to find justification for the budgets allocated to non-commercial space missions. The most frequent justifications were scientific discoveries, technological development as well as national prestige. The current study aims to have a different look at the question “Which are the benefits brought by space?” by investigating/sampling/interrogating the public opinion and identifying the perception and view of the generation that form the bulk of the taxpaying citizens for the immediate future and will be actively financing any future missions. The study focuses on the answers provided to an online survey by an international sample of population. The target individuals are in the age range of 25–44 and are users of social networks. They are either employed or students, but they are not directly involved with the space sector. The survey aims to establish whether the promotional activities of ESA, NASA and other space agencies are aligned with the perceived benefits of this sample population. Is space contributing to what the target people consider important? What could be done to improve/change this perception? How did the public perception evolve? Which are the biggest problems humanity is confronted with today according to the sample population? Could space help addressing these major problems? The paper will firstly present the statistical analysis of the sample answers and the conclusions that can be drawn from them. In a second step it will compare the perceptions and expectations of the public in regards to space with the current space agencies strategies and identify the gaps and discontinuities.  相似文献   

7.
Jones EG  Lineweaver CH  Clarke JD 《Astrobiology》2011,11(10):1017-1033
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ~310?km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ~5?km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ~3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.  相似文献   

8.
Saara Reiman   《Space Policy》2009,25(2):81-87
Expanding the human sphere of influence beyond Earth presents philosophical questions that also have important practical applications. Do we need to worry about the moral implications of our actions in the vastness of space? What kind of explorers will we be - and what kind of explorers should we be? The answers to these basic questions depend greatly on what moral status is assigned to space; how it is conceptualized. This article sets forth arguments both for and against considering space as an environment, that is, as a place deserving of ethical treatment in the same way that terrestrial environments are valued and respected in environmental ethics. It sketches some answers to how space exploration could meet high ethical standards and puts forward the notion of environmental ‘virtue ethics’.  相似文献   

9.
The paper discusses the problems of the choice of high-apogee orbits of artificial Earth satellites (AES), proceeding from the tasks of space experiments aimed at studying near-earth space and taking into account the features of the orbital evolution and ballistic lifetime. The suggested methods of the choice of orbits consist of two components. The first is based on the use of mathematical models of studied regions of near-earth space and various techniques of situation analysis, among which the annual and daily orbital tori developed by the author about 35 years ago are key. The second component is based on qualitative methods of the theory of perturbations of high-apogee AES orbits developed by M.L. Lidov more than 50 years ago.  相似文献   

10.
The new-born bioscience called Nanobiology has tackled the problems of the possibility of existence of extraterrestrial life and intelligence and of biosystem distribution in the Universe, as such questions actually belong to the realm of Theoretical Biology. The central, and yet unanswered points of such science have been reinvestigated by attempting knowledge and control of the hard-to-determine nanoscale-level classical and quantum interactions, which would supposedly give mechanistic, definite answers, both informationally and energetically, to the vexing questions put by biosystems to science: is the “living state” a physically definible concept, and how to define it? Are nanoscale kinetics or even detailed mechanics involved in the origin of life? What about intelligence, consciousness and their nanophysical roots? Are “life” and “intelligence” engineerable properties, or is any Artificial Intelligence program bound to mere metaphors? Self-organization, studied at the thermodynamic and the hydrodynamic level, showed the possibility of chemical evolution from amino acids, probably of cometary and/or meteoritic origin, up to spatiotemporal organization, autopoiesis and biological evolution, but didn't explain the origins of life. Questioning the uniqueness of the earthly evolutionary chemistry is cardinal for the ETI dilemma, as from a budgetary appraisal of perspectives in bionanoscale chaotic undecidable dynamics, quantum gravity and quantum vacuum, both “living state” and “intelligence” look like nonlocal, spacetime-linked cosmic phenomena.  相似文献   

11.
Watson AJ 《Astrobiology》2008,8(1):175-185
Structurally complex life and intelligence evolved late on Earth; models for the evolution of global temperature suggest that, due to the increasing solar luminosity, the future life span of the (eukaryote) biosphere will be "only" about another billion years, a short time compared to the approximately 4 Ga since life began. A simple stochastic model (Carter, 1983) suggests that this timing might be governed by the necessity to pass a small number, n, of very difficult evolutionary steps, with n < 10 and a best guess of n = 4, in order for intelligent observers like ourselves to evolve. Here I extend the model analysis to derive probability distributions for each step. Past steps should tend to be evenly spaced through Earth's history, and this is consistent with identification of the steps with some of the major transitions in the evolution of life on Earth. A complementary approach, identifying the critical steps with major reorganizations in Earth's biogeochemical cycles, suggests that the Archean-Proterozoic and Proterozoic-Phanerozoic transitions might be identified with critical steps. The success of the model lends support to a "Rare Earth" hypothesis (Ward and Brownlee, 2000): structurally complex life is separated from prokaryotes by several very unlikely steps and, hence, will be much less common than prokaryotes. Intelligence is one further unlikely step, so it is much less common still.  相似文献   

12.
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity?s access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today?s restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.  相似文献   

13.
O. Wolczek 《Acta Astronautica》1983,10(11):739-742
In spite of numerous observations and intense theoretical work already accomplished, many important questions concerning comets remain unsolved. The origin of comets is far from being elucidated. The nature of comets, of their nuclei seems to be reasonably described by the model of Whipple, yet their very structure and constitution remain hypothetical. The complex internal dynamics of active comets awaits a detailed explanation. One of the outstanding problems pertains to the very nature of the residual material remaining after the outgasing of the cometary nucleus. The problem is connected with the presence of organic matter, of their constituents as well as aggregates important to the development of life and to the hypothetical influence of such ingredients on the evolution of its forms already existing on some celestial bodies.It is obvious that irrespective to the recently devised methods and instruments new developments are needed. The paper attempts to show some novel ways of exploration of comets by the use of astronautical means. Recommendations for the realization of such future cometary missions are presented.  相似文献   

14.
The possibility of using the statistics of recurrence time for extreme events is studied in this paper having in mind the problems of control and prediction of failures in spacecraft operation. The information about failures onboard satellites of various types presented by the US National Geophysical Data Center was analyzed. It was found that the probability density of recurrence intervals followed a power law of the Pareto type with an index equal to 2.3. The obtained result is consistent both with the theory of normal catastrophes and with the principle of self-organization of criticality for metastable active heterogeneous environment. A practical consequence of the obtained result consists in the fact that predictions of these extreme events should not rely on traditional models with the second-order Pearson statistics. To make predictions, the models are necessary that take into account the power law distribution of recurrence intervals for failures on satellites. The failures should be considered in these models as extreme events connected with manifestation of the space environment factors.  相似文献   

15.
Kazuto Suzuki   《Space Policy》2005,21(1):1334
The Japanese administrative reform which took place in recent years integrated NASDA and ISAS to create a larger space agency. Why was such an agency called for? What was the purpose behind the administrative reform? This article examines the motivations, objectives and responses to the reform process by using policy logic and institutional analysis to examine the evolution of the Japanese space programme. It argues that the reform aimed to rationalize the national administrative system and salvage the government from financial crisis. Thus, the reform was not designed to strengthen space activities in Japan, and as a result, Japanese space policy making is confused.  相似文献   

16.
The structures governing European space activity, now some 50 years old, require reform to take better account of the plethora of space uses, the growing involvement in space of the EU and the variable degree of European integration. Adopting a method that involves identifying weaknesses in governance – e.g. lack of a European military space programme; problems in maintaining operational service continuity; opposition to change – the authors argue that only by harmonising its decision making and coherently integrating its public organisations will Europe be able to achieve a space programme commensurate with its technical capabilities and its political dimension.  相似文献   

17.
Skoog AI 《Acta Astronautica》1982,9(12):727-740
The delivery of fully qualified Environmental Control and Life Support System (ECLS) flight hardware for the Spacelab Flight Unit was completed in 1979, and the first Spacelab flight is scheduled for mid 1983.

With Spacelab approaching its operational stage, ESA has initiated the Follow-on Development Programme. The future evolution of Spacelab elements in a continued U.S./European cooperation is obviously linked to the U.S. STS evolution and leads from the sortie-mode improvements (Initial Step) towards pallet systems and module applications in unmanned and manned space platforms (Medium and Far Term Alternatives).

Extensive studies and design work have been accomplished on life support systems for Life Sciences Laboratories (Biorack) in Spacelab (incubators and holding units for low vertebrates).

Future long term missions require the implementation of closed loop life support systems and in order to meet the long range development cycle feasibility studies have been performed. Terrestrial applications of the life support technologies developed for space have been successfully implemented.  相似文献   


18.
载人深空探测任务航天医学工程问题研究   总被引:2,自引:1,他引:1  
航天医学工程问题关系到载人深空探测任务中的人员生存及健康。文章从人员长期生存的生命保障、变重力生理效应及防护、地外环境效应与防护、人员生理健康监测与维护、人员心理健康等方面的问题入手,分析了问题产生的原因及解决的必要性,并提出了解决思路,为后续深入开展相关关键技术的攻关提供参考。最后,以载人月球基地任务为案例,提出了生命保障、变重力防护、辐射及月尘防护、生理及心理健康监测及维护等问题的解决方案。  相似文献   

19.
A viable spacelab programme is based on the thesis that biomedical specialists require a quantifiable, and possibly mechanistic, understanding of the significant changes observed in crew, in and after manned space flights. Only then can prophylaxis or atraumatic reversal be achieved (with potentially an added use to ameliorate qualitatively similar disease aspects on Earth). This approach could justify national funding to promote lead-up ground-based research as well as research and development for special equipment, of which the "spin-off" into clinical practice could well precede its first use in Spacelab. The requirement for "applied expediency" arises from the watershed met early in the evolution of a life-sciences programme. Initially, the facility of space flight provoked numerous valid experiments designed to test for, or quantitate, gravity-dependent mechanisms and their interaction with other agents, radiation, vibration, or absence of triggers for rhythmic patterns. In parallel, measurable parameters of man's function in space were being monitored, primarily to promote survival by remedial action when available. Monitoring data were then developed to find a critical mechanism feasible to testing. Often the rationale for such tests and experiments was that "man was there" and could, moreover, attend to several biological experiments in space! The watershed appeared when man in a Spacelab was shown as a hazard to the instrumentation, cleanliness, accuracy, thermal control, weight limits, etc. essential to the other disciplines. Other than the life sciences only the technological requirements of materials processing required a manned spacelab! So, life scientists have needed to rethink their payloads, and their constrictions, to plan for compatible load sharing. A composite of proposed biomedical projects related to apparently unanswered etiology of observed changes in returning astronauts will be used to illustrate the evolution of and possible answers to sample problems. The principles outlined, their moderation by expediency (with the untouched upon need for the enthusiastic involvement of biomedical potential in space projects) should remain our guidelines. This is in spite of the expected obsolescence of these specific projects within the next decade.  相似文献   

20.
《Acta Astronautica》1987,15(8):577-581
The future missions of the National Aeronautics and Space administration (NASA) directed at solar system exploration, astrophysical, planetary and Earth Sciences observations will require advanced capabilities for acquiring data from space platforms. For example, NASA's terrestrial observation program is confronted by a range of challenging and important new problems derived from advances in the Earth Sciences over the past twenty years. New observational approaches appear promising for solving older problems which will benefit meteorology, agriculture, mineralogy, and geodynamics. Furthermore, many of the problems which space observations may help to solve are inherently interdisciplinary of the above areas. Although much is known about the Earth, the unifying concepts are still to be established and remote sensing from space will continue to be a vital experimental tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号