首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Modeling of transgenic microorganism introduction into small man-made ecosystems can help forecast changes in expression of cloned genes under different conditions of existence. Introduction of the E. coli Z905/pPHL7 strain containing a plasmid with luminescent system genes of luminous bacteria led to changes in cell and colony morphology, reduction in metabolic activity of cells, and, as a result, a lower level of expression of cloned gene. A low concentration of nutrients has been shown to favor greatly the phenotypic change of cells of the recombinant strain. Expression of cloned genes changed due to: a lower concentration of plasmid DNA, a change in regulation of cloned genes, and a change in cells of biosynthesis of substrates needed for expression of luminescent genes. The conducted investigations can provide a basis for the use of marker transgenic microorganisms in closed ecosystems of different types. Grant numbers: 99-04-96017, 00-07-9011.  相似文献   

2.
Simple models of terrestrial ecosystems with a limited number of components are an efficient tool to study the main laws of functioning of populations, including microbial ones, and their communities, as components of natural ecosystems, under variable environmental conditions. Among other factors are the increase of carbon dioxide in the atmosphere and limitation of plants' growth by biogenic elements. The main types of ecosystems' responses to changes in environmental conditions (a change in CO2 concentration) have been demonstrated in a "plants-rhizospheric microorganisms-artificial soil" simple experimental system. The mathematical model of interactions between plants and microorganisms under normal and elevated atmospheric CO2 and limitation by nutrients (nitrogen and phosphorus) yielded a qualitative agreement between calculated and experimental values of limiting substances concentrations and release rates of exudates.  相似文献   

3.
The processes resulting from the introduction of the tranagenic microorganism (TM) E. coli Z905/pPHL7 into aquatic microcosms have been modeled experimentally. It has been shown that the TM E. coli is able to adapt to a long co-existence with indigenous heterotrophic microflora in variously structured microcosms. In more complex microcosms the numerical dynamics of the introduced E. coli Z905/pPHL7 population is more stable. In the TM populations staying in the microcosms for a prolonged time, changes are recorded in the phenotypic expression of plasmid genes (ampicillin resistance and the luminescence level) and chromosome genes (morphological and physiological traits). However, in our study microcosms, the recombinant plasmid persisted in the TM cells for 6 years after the introduction, and as the population adapts to the conditions of the microcosms, the efficiency of the cloned gene expression in the cells is restored. In the microcosms with high microalgal counts (10(7) cells/ml), cells with a high threshold of sensitivity to ampicillin dominate in the population of the TM E. coli Z905/pPHL7.  相似文献   

4.
Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water.  相似文献   

5.
A mathematical model concerning the interaction of plants and rhizospheric microorganisms on complete mineral medium and under nitrogen limitation has been constructed. The model takes into account the closeness of plants and microorganisms in terms of the matter released by the plant and consumed by the microorganisms. The effect of rhizospheric microorganisms on plant growth with normal carbon dioxide and complete mineral medium has been demonstrated. Plants interacting with microorganisms have a greater biomass than plants growing without microorganisms. Wheat growth stimulation by metabolites of rhizospheric microorganisms under laboratory conditions on artificial soil has been experimentally demonstrated (Pechurkin, 1997). Under nitrogen limitation, the biomass of plants, with or without microorganisms, is identical, and is substantially reduced as compared with the medium with standard nitrogen.  相似文献   

6.
7.
Modelling canopy photosynthesis in response to environmental conditions.   总被引:3,自引:0,他引:3  
Physiological models in the plant and crop sciences provide a means of integrating different aspects of the system, in particular the interaction between plant processes and environmental factors. This paper focuses on the response of canopy photosynthesis, including adaptation, to environmental conditions. Adaptation is likely to be important when considering controlled ecological life support systems since physiological characteristics are affected by past as well as current environmental conditions. In particular, the level of photosynthetic enzymes in a plant is generally greater for plants grown in high irradiance levels than for similar plants grown in low irradiance. The models have been developed to apply to 'normal' growing conditions, although the principles will apply to closed bioregenerative systems.  相似文献   

8.
Studying material transformations and biotic cycling in artificial ecosystems (AES), we need to know the principles of biological adaptation of active organisms to change in the environment. Microorganisms in AES for water purification are the most active transforming organisms and consumers of the organic substances contained in wastes. Utilization of organic substances is directly connected with the energy fluxes used by AES. According to energy criteria, the energy fluxes used by a biological system tend to reach maximum values under stable conditions. Unutilized substrate concentration decreases as a result of biological adaptations. After a dramatic change in environmental factors, for example, after a sharp increase in the flow rate of organic substances, the biological system is not able to react quickly. The concentration of unutilized substrate increases and the energy flux used by the biological system decreases. The structure of the microbial community also changes, with a decrease in biological diversity. The efficiency of energy use by simple terrestrial ecosystems depends on the energetic intensity and interactions between plants and rhizospheric microorganisms.  相似文献   

9.
Long-term preservation of microbial ecosystems in permafrost.   总被引:8,自引:0,他引:8  
It has been established that significant numbers (up to 10 million cells per gram of sample) of living microorganisms of various ecological and morphological groups have been preserved under permafrost conditions, at temperatures ranging from -9 to -13 degrees C and depths of up to 100 m, for thousands and sometimes millions of years. Preserved since the formation of permafrost in sand-clay sediments of the Pliocene-Quaternary period and in paleosols and peats buried among them, these cells art the only living organisms that have survived for a geologically significant period of time. The complexity of the microbial community preserved varies with the age of the permafrost. Eukaryotes are found only in Holocene sediments; while prokaryotes are found to greater ages, i.e., Pliocene and Pleistocene. The diversity of microorganisms decreases with increasing age of sediments, and as a result cocci and corynebacteria are predominant. Enzyme activity (catalase and hydrolytic enzymes) and photosynthetic pigments (chlorophyll and pheophytin have also been detected in permafrost sediments. These results permit us to outline some approaches to the search for traces of life in the permafrost of Martian sediments by borehole core sampling. It is in the deep horizons (and not on the planet surface), isolated by permafrost from the external conditions, that results similar to those obtained on Earth can be expected.  相似文献   

10.
考虑保持架柔性处理及滚动轴承各组件间的相互作用关系,利用ADAMS/View平台构建了真空条件下不同保持架的轴承刚柔耦合多体动力学分析模型,采用正交试验法分析了转速、保持架厚度和兜孔形状对保持架动态特性的影响规律。结果表明:随着轴承转速增加,保持架转速稳定性降低,动态接触力和打滑率升高,质心轨迹呈“筒状”;保持架厚度对保持架动态性能影响最大,质心轨迹受兜孔形状影响最大;动量轮用保持架最优工况及设计为:轴承转速为2000 (r/min),厚度为2 mm,兜孔形状为方型兜孔。  相似文献   

11.
Landsat-4 Thematic Mapper (TM) data recorded over an arid terrain were analyzed to determine the applicability of using of TM data for identifying and mapping hydrothermally altered, potentially mineralized rocks. Clays, micas, and other minerals bearing the OH anion in specific crystal lattice positions have absorption bands in the 2.2-μm region (TM channel 7, TM7) and commonly lack features in the 1.6-μm region (TM5). Channel ratios TM5/TM7, TM5/TM4, and TM3/TM1 were combined into a color-ratio-composite (CRC) image and used to distinguish hydrothermally altered rocks, unaltered rocks, and vegetation. These distinctions are made possible by using the TM5 and TM7, channels which are not available in the Landsat multispectral scanner (MSS). Digital masking was used to eliminate ambiguities due to water and shadows. However, some ambiguities in identification resulted between altered volcanic rocks and unaltered sedimentary deposits that contained clays, carbonates, and gypsum, and between altered volcanic rocks and volcanic tuffs diagenetically altered to zeolites. However, compared to MSS data, TM data should greatly improve the ability to map hydrothermally altered rocks in arid terrains.  相似文献   

12.
If life were present on Mars to day, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebre (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.  相似文献   

13.
In connection with planetary quarantine, we have been studying the survival rates of nine species of terrestrial microorganisms (viruses, bacteria, yeasts, fungi, etc.) under simulated interstellar conditions. If common terrestrial microorganisms cannot survive in space even for short periods, we can greatly reduce expenditure for sterilizing space probes. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 k, 4 x 10(-6) torr), and protons irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, Tobacco mosaic virus, Bacillus subtilis spores, Aspergillus niger spores and Clostridiun mangenoti spores showed survival rates of 82%, 45%, 28%, and 25%, respectively. Furthermore. pathogenic Candida albicans showed 7% survival after irradiation corresponding to about 60 years in space.  相似文献   

14.
Dynamics of active sludge microorganism activity in aerotanks under chemostat conditions has been studied. Dependence of microorganism catalase activity has been found to depend on residual substrate concentration in proportion to the biomass of microorganisms. Experimental data and field observations has formed the basis to develop a technique to evaluate in relative units the amount of the substrate consumed by biocenosis of the active sludge in the air tanks of purification facilities.  相似文献   

15.
Functional, regulatory and indicator features of microorganisms in development and functioning of the systems and sustaining stability of three man-made ecosystem types has been studied. 1) The functional (metabolic) feature was studied in aquatic ecosystems of biological treatment of sewage waters for the reducer component. 2) The regulatory feature of bacteria for plants (producer component) was studied in simple terrestrial systems "wheat plants-rhizospheric microorganisms-artificial soil" where the behavior of the system varied with activity of the microbial component. For example with atmospheric carbon dioxide content elevated microbes promote intensification of photosynthesis processes, without binding the carbon in the plant biomass. 3) The indicator feature for the humans (consumer component) was studied in Life Support Systems (LSS). High sensitivity of human microflora to system conditions allowed its use as an indicator of the state of both system components and the entire ecosystem. Grant numbers: N99-04-96017, N15.  相似文献   

16.
The resistance of terrestrial microorganisms under the thermo-physical conditions of Mars (diurnal temperature variations, UV climate, atmospheric pressure and gas composition) at mid-latitudes was studied for the understanding and assessment of potential life processes on Mars. In order to accomplish a targeted search for life on other planets, e.g. Mars, it is necessary to know the limiting physical and chemical parameters of terrestrial life. Therefore the polyextremophile bacterium Deinococcus radiodurans was chosen as test organism for these investigations. For the simulation studies at the Planetary and Space Simulation Facilities (PSI) at DLR, Cologne, Germany, conditions that are present during the southern summer at latitude of 60° on Mars were applied.We could simulate several environmental parameters of Mars in one single experiment: vacuum/low pressure, anoxic atmosphere and diurnal cycles in temperature and relative humidity, energy-rich ultraviolet (UV) radiation as well as shielding by different martian soil analogue materials. These parameters have been applied both single and in different combinations in laboratory experiments. Astonishingly the diurnal Mars-like cycles in temperature and relative humidity affected the viability of D. radiodurans cells quite severely. But the martian UV climate turned out to be the most deleterious factor, though D. radiodurans is red-pigmented due to carotenoids incorporated in its cell wall, which have been assigned not only a possible role as free radical scavenger but also as a UV-protectant. An additional UV-protection was accomplished by mixing the bacteria with nano-sized hematite.  相似文献   

17.
A number of space-based experiments have been conducted to assess the impact of microgravity on plant growth and development. In general, these experiments did not identify any profound impact of microgravity on plant growth and development, though investigations to study seed development have indicated difficulty in plants completing their reproductive cycle. However, it was not clear whether the lack of seed production was due to gravity effects or some other environmental condition prevailing in the unit used for conducting the experiment. The ASTROCULTURE (TM) flight unit contains a totally enclosed plant chamber in which all the critically important environmental conditions are controlled. Normal wheat (Triticum aestivum L.) growth and development in the ASTROCULTURE (TM) flight unit was observed during a ground experiment conducted prior to the space experiment. Subsequent to the ground experiment, the flight unit was transported to MIR by STS-89, as part of the U.S. Shuttle/MIR program, in an attempt to determine if super dwarf wheat plants that were germinated in microgravity would grow normally and produce seeds. The experiment was initiated on-orbit after the flight unit was transferred from the Space Shuttle to MIR. The ASTROCULTURE (TM) flight unit performed nominally for the first 24 hours after the flight unit was activated, and then the unit stopped functioning abruptly. Since it was not possible to return the unit to nominal operation it was decided to terminate the experiment. On return of the flight unit, it was confirmed that the control computer of the ASTROCULTURE (TM) flight unit sustained a radiation hit that affected the control software embedded in the computer. This experience points out that at high orbital inclinations, such as that of MIR and that projected for the International Space Station, the danger of encountering harmful radiation effects are likely unless the electronic components of the flight hardware are resistant to such impacts.  相似文献   

18.
Ontogeny of plants under various gravity condition.   总被引:2,自引:0,他引:2  
The results of experiments performed under conditions of microgravity (MG) or under its simulation on the horizontal clinostat (HC) with the callus, seedlings of various species and embryogenic structures have revealed a definite role of gravity as an ecological factor in the processes of cytomorphogenesis, growth, and development. The transformation of differentiated somatic cells of arabidopsis seed into undifferentiated callus was not inhibited under MG, though modifications of the whole callus morphology and of mean cell and nucleus size were observed. The morphogenesis of polar structures such as root-hair bearing cells of Lactuca primary root has been shown to be modified in the course of differentiation under mass acceleration diminished below 0.1 g. Seed germination and seedling morphogenesis under MG follow their normal course, but a significant stimulation of shoot growth with no effect on primary root growth has been determined. A successful in vitro regeneration of Nicotiana tabacum plantlets from leaf cells and subsequent formation of shoots and roots on a continuously rotating HC as well as the formation of viable seeds during seed-to-seed growth of Arabidopsis plants under MG have indicated that gravity plays but a limited role in the processes of embryogenesis and organogenesis.  相似文献   

19.
The July 1982 launch of Landsat-4 was immediately followed by a two-year comprehensive set of detailed investigations sponsored by the National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC). The Landsat Image Data Quality Analysis (LIDQA) research plans for these investigations were specified prior to launch, so that minimum time would be lost in assessing the performance of the long-awaited Thematic Mapper (TM) sensor that Landsat-4 carried in addition to a fourth Multispectral Scanner (MSS). The LIDQA investigations have been substantially completed, and have shown that the TM is a very good spaceborne multispectral radiometer, and has met or exceeded most of its design goals. TM's new short-wave infrared (SWIR) spectral capability yielded improved mineral and plant discrimination compared to the MSS, as anticipated by ground-based and airborne TM simulations. Moreover, the improved spatial resolution and geometric accuracy of Landsat-4 and the TM have resulted in satellite image maps exceeding 1:100,000 U.S. map accuracy standards. Finally, based on an information entropy measure, principal component analysis, and classification results, TM data has been shown to approach its theoretical limit in information content per pixel, exceeding the MSS by at least a factor of two.  相似文献   

20.
The ESA MarsNet mission proposal consists most probably of a trio of Mars landers. These landers each contain a variety of scientific equipment. The network of stations demands for a definition of its planetary protection requirements. With respect to the MarsNet mission only forward contamination problems will be considered. Future involvement of European efforts in planetary exploration including sample returns will also raise the problem of back contamination. A tradeoff study for the overall scientific benefit with respect to the approximative cost is necessary. Planetary protection guide-lines will be proposed by an interdisciplinary and international board of experts working in the fields of both biology and planetary science. These guide-lines will have to be flexible in order to be modified with respect to new research results, e.g. on adaptation of microorganisms to extreme (space) conditions. Experiments on the survival of microorganisms at conditions of simulated Mars surface and subsurface will have to be conducted in order to obtain a baseline data collection as a reference standard for future guide-lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号