首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TMA from bearings and multipath time delays   总被引:2,自引:0,他引:2  
A novel approach for target motion analysis (TMA), which uses conventional passive bearing together with multipath time-delay measurements is examined. This so-called "Multipath TMA" offers two tactical advantages over the classical bearings-only TMA: no requirement for any ownship maneuver, and a good performance in terms of estimation error achieved in a shorter time. Both known and unknown multipath cases are addressed. Finally, Monte-Carlo simulations and at-sea trials demonstrate the practical efficiency of such a multipath TMA.  相似文献   

2.
We present a new batch-recursive estimator for tracking maneuvering targets from bearings-only measurements in clutter (i.e., for low signal-to-noise ratio (SNR) targets), Standard recursive estimators like the extended Kalman Iter (EKF) suffer from poor convergence and erratic behavior due to the lack of initial target range information, On the other hand, batch estimators cannot handle target maneuvers. In order to rectify these shortcomings, we combine the batch maximum likelihood-probabilistic data association (ML-PDA) estimator with the recursive interacting multiple model (IMM) estimator with probabilistic data association (PDA) to result in better track initialization as well as track maintenance results in the presence of clutter. It is also demonstrated how the batch-recursive estimator can be used for adaptive decisions for ownship maneuvers based on the target state estimation to enhance the target observability. The tracking algorithm is shown to be effective for targets with 8 dB SNR  相似文献   

3.
Classical bearings-only target-motion analysis (TMA) is restricted to sources with constant motion parameters (usually position and velocity). However, most interesting sources have maneuvering abilities, thus degrading the performance of classical TMA. In the passive sonar context a long-time source-observer encounter is realistic, so the source maneuver possibilities may be important in regard to the source and array baseline. This advocates for the consideration and modeling of the whole source trajectory including source maneuver uncertainty. With that aim, a convenient framework is the hidden Markov model (HMM). A basic idea consists of a two-levels discretization of the state-space. The probabilities of position transition are deduced from the probabilities of velocity transitions which, themselves, are directly related to the source maneuvering capability. The source state sequence estimation is achieved by means of classical dynamic programming (DP). This approach does not require any prior information relative to the source maneuvers. However, the probabilistic nature of the source trajectory confers a major role to the optimization of the observer maneuvers. This problem is then solved by using the general framework of the Markov decision process (MDP)  相似文献   

4.
Discusses the extensive mathematical analysis carried out by the authors of the original paper [see ibid., vol. 33, no. 1, p. 178-201, 1997] and submits the following points. The authors used pseudo measurements for recasting the observability problem into a linear framework. They treated the bearings-only passive target tracking system as a deterministic system. It is already established that for deterministic systems, the pseudo measurements are linear functions of the states of the system, though the coefficient matrix is a nonlinear function of the original measurements, By using the pseudo measurements in a linear observer, global stability can be shown. However, if the pseudo measurement observer, for which the analysis is mostly carried out by the authors, is used in a noisy environment as a pseudo measurement filter (PMF), biased estimates are arrived at. Hence, though the approach of authors is quite direct and provides insights about the algebraic structure of the BOT problem, as pseudo measurements are used throughout the analysis is not of much use to the TMA community, as the nonlinear measurement equation along with measurement noise are required to be considered in the BOT problem to obtain unbiased results  相似文献   

5.
The problem of target motion analysis (TMA) has been the subject of an important literature. However, present methods use data estimated by a short time analysis (azimuths, Dopplers, etc.). For far sources, the nonstationarities of the array processing outputs, induced by the sources motion, may be simply modeled. This model leads one to consider directly a spatio-temporal TMA. Then new (spatio-temporal) data can be estimated. These estimates correspond to a long time analysis. Further, note that they are estimated independently of the (classical) bearings. In this general framework, the concept of source trajectory replaces the classical instantaneous bearings. Corresponding TMA algorithms are then studied. Then the study of statistical performance is carefully studied  相似文献   

6.
Observability Criteria for Bearings-Only Target Motion Analysis   总被引:6,自引:0,他引:6  
The observability requirements for bearings-only target motion analysis (TMA) are rigorously established by solving a third-order nonlinear differential equation. Closed form expressions are developed and subsequently used to specify necessary and sufficient conditions on own-ship motion that insure a uniquetracking solution. It is shown that for certain types of maneuvers the estimation process remains unobservable, even when the associated bearing rate is nonzero. Such maneuvers are frequently overlooked in heuristic discussions of TMA observability, which may account for some common misconceptions regarding the characteristics of acceptable own-ship motion.  相似文献   

7.
The problem of bearings-only target localization is to estimate the location of a fixed target from a sequence of noisy bearing measurements. Although, in theory, this process is observable even without an observer maneuver, estimation performance (i.e., accuracy, stability and convergence rate) can be greatly enhanced by properly exploiting observer motion to increase observability. This work addresses the optimization of observer trajectories for bearings-only fixed-target localization. The approach presented herein is based on maximizing the determinant of the Fisher information matrix (FIM), subject to state constraints imposed on the observer trajectory (e.g., by the target defense system). Direct optimal control numerical schemes, including the recently introduced differential inclusion (DI) method, are used to solve the resulting optimal control problem. Computer simulations, utilizing the familiar Stansfield and maximum likelihood (ML) estimators, demonstrate the enhancement to target position estimability using the optimal observer trajectories  相似文献   

8.
9.
An extension is presented to the particle filtering toolbox that enables nonlinear/non-Gaussian filtering to be performed in the presence of out-of-sequence measurements (OOSMs) with arbitrary lag, without the need to adopt linearising approximations in the filter and without the degradation of performance that would occur if the OOSMs were simply discarded. An estimate of the performance of the OOSM particle filter (OOSM-PF) is obtained for bearings-only tracking scenarios with a single target and a small number of sensors. These performance estimates are then compared with the posterior Cramer-Rao lower bound (CRLB) for the state estimate rms error and similar performance estimates obtained from the oosm extended Kalman filter (OOSM-EKF) algorithms recently introduced in the literature. For a mildly nonlinear bearings-only tracking problem the OOSM-PF and OOSM-EKF are shown to achieve broadly similar performance.  相似文献   

10.
The target motion analysis (TMA) for a moving scanning emitter with known fixed scan rate by a single observer using the time of interception (TOI) measurements only is investigated in this paper.By transforming the TOI of multiple scan cycles into the direction difference of arrival (DDOA) model,the observability analysis for the TMA problem is performed.Some necessary conditions for uniquely identifying the scanning emitter trajectory are obtained.This paper also proposes a weighted instrumental variable (WIV) estimator for the scanning emitter TMA,which does not require any initial solution guess and is closed-form and computationally attractive.More importantly,simulations show that the proposed algorithm can provide estimation mean square error close to the Cramer-Rao lower bound (CRLB) at moderate noise levels with significantly lower estimation bias than the conventional pseudo-linear least square (PLS) estimator.  相似文献   

11.
The problem of state estimation using nonlinear additive Gaussian noise measurements is addressed. A geometric model for the posterior state density is assumed based on a multidimensional Haar basis representation. An approximate reduced statistics (ARS) algorithm, suggested by the parameter estimator of Kulhavy is then developed, using successive minimization of relative entropy between model densities and an approximate posterior density. The state estimator thus derived is applied to a bearings-only target tracking problem in a multiple sensor scenario  相似文献   

12.
The observability properties of the constant-speed target tracking problem via bearings-only measurements are investigated. It is shown that there exists a one-dimensional unobservable foliation which is computed. Explicit formulas are given to recover the observable part. It is shown that the direction of target trajectory is observable and that the whole state is observable if either the norm of the velocity or the distance is also known. A nonlinear observer which has a parallel structure and tolerates faults on distance measurements is presented. Finite-dimensional filters for the approximating models in the case of noisy measurements are given on the basis of output function polynomial approximations  相似文献   

13.
In conventional passive and active sonar system, target amplitude information (AI) at the output of the signal processor is used only to declare detections and provide measurements. We show that the AI can be used in passive sonar system, with or without frequency measurements, in the estimation process itself to enhance the performance in the presence of clutter where the target-originated measurements cannot be identified with certainty, i.e., for “low observable” or “dim” (low signal-to-noise ratio (SNR)) targets. A probabilistic data association (PDA) based maximum likelihood (ML) estimator for target motion analysis (TMA) that uses amplitude information is derived. A track formation algorithm and the Cramer-Rao lower bound (CRLB) in the presence of false measurements, which is met by the estimator even under low SNR conditions, are also given. The CRLB is met by the proposed estimator even at 6 dB in a cell (which corresponds to 0 dB for 1 Hz bandwidth in the case of a 0.25 Hz frequency cell) whereas the estimator without AI works only down to 9 dB. Results demonstrate improved accuracy and superior global convergence when compared with the estimator without AI. The same methodology can be used for bistatic radar  相似文献   

14.
对卫星目标的仅测角天基单站无源定位可观测性分析   总被引:3,自引:0,他引:3  
吴顺华  辛勤  万建伟 《航空学报》2009,30(1):104-108
可观测性分析是无源定位与跟踪系统的前提和基础。由于卫星运动系统方程是状态变量的隐函数形式,以及观测方程的非线性,使得对卫星目标仅测角无源定位的可观测性研究难度较大。鉴于此,从伪线性化角度对非线性系统方程进行改造,推导了关于状态变量的显性系统状态方程,对仅测角条件下的单星对星无源定位系统进行了可观测性分析,为进一步研究仅测角单星对星的无源定轨跟踪提供了理论基础。最后给出了仿真实例,验证了理论分析的正确性。  相似文献   

15.
It is well known that passive target tracking by a single observer, commonly referred to as target motion analysis (TMA), can be done using angle and/or frequency measurements. Depending on the measurement set, different passive tracking procedures result: angle-only tracking (AOT), frequency-only tracking (FOT), and angle/frequency tracking (AFT). Whereas the two-dimensional passive tracking problem has been solved for a multitude of scenarios, thus giving a good insight into the parametric dependences, the three-dimensional problem has been discussed only in a few specific cases. To get a deeper insight into the parametric dependences of three-dimensional TMA, this work analyzes AOT and AFT in typical three-dimensional Airborne Warning and Control System (AWACS) scenarios. A Cramer Rao (CR) analysis of the problem reveals the parametric dependences of both methods and gives a clear idea of the increase in estimation accuracy by using AFT instead of AOT. The results obtained in this way are well confirmed by Monte Carlo simulations taking maximum likelihood (ML) as estimation procedure.  相似文献   

16.
An important problem in target tracking is the detection and tracking of targets in very low signal-to-noise ratio (SNR) environments. In the past, several approaches have been used, including maximum likelihood. The major novelty of this work is the incorporation of a model for fluctuating target amplitude into the maximum likelihood approach for tracking of constant velocity targets. Coupled with a realistic sensor model, this allows the exploitation of signal correlation between resolution cells in the same frame, and also from one frame to the next. The fluctuating amplitude model is a first order model to reflect the inter-frame correlation. The amplitude estimates are obtained using a Kalman filter, from which the likelihood function is derived. A numerical maximization technique avoids problems previously encountered in “velocity filtering” approaches due to mismatch between assumed and actual target velocity, at the cost of additional computation. The Cramer-Rao lower bound (CRLB) is derived for a constant, known amplitude case. Estimation errors are close to this CRLB even when the amplitude is unknown. Results show track detection performance for unknown signal amplitude is nearly the same as that obtained when the correct signal model is used  相似文献   

17.
This work deals with the problem of multiple target tracking, from the measurements made on a field of passive sonars activated by an active sonar (multistatic network). The difficulties encountered then are of two kinds: each sensor alone does not provide full observability of a target, and multiple, possibly maneuvering targets moving in a cluttered environment must be dealt with. The algorithm presented here is based on a discrete Markovian modelization of the targets evolution in time. It starts with a fusion of the detections obtained at each measurement time. Tracking and target motion analysis (TMA) are next achieved thanks to dynamic programming (DP). This approach leads to multiple and maneuvering target tracking, with few assumptions; for instance, the use of deterministic target state models are avoided. Simulation results are presented and discussed.  相似文献   

18.
Shifted Rayleigh filter: a new algorithm for bearings-only tracking   总被引:1,自引:0,他引:1  
A new algorithm, the "shifted Rayleigh filter," is introduced for two- or three-dimensional bearings-only tracking problems. In common with other "moment matching" tracking algorithms such as the extended Kalman filter and its modern refinements, it approximates the prior conditional density of the target state by a normal density; the novel feature is that an exact calculation is then performed to update the conditional density in the light of the new measurement. The paper provides the theoretical justification of the algorithm. It also reports on simulations involving variants on two scenarios, which have been the basis of earlier comparative studies. The first is a "benign" scenario where the measurements are comparatively rich in range-related information; here the shifted Rayleigh filter is competitive with standard algorithms. The second is a more "extreme" scenario, involving multiple sensor platforms, high-dimensional models and noisy measurements; here the performance of the shifted Rayleigh filter matches the performance of a high-order bootstrap particle filter, while reducing the computational overhead by an order of magnitude.  相似文献   

19.
对多目标测向无源定位问题进行了研究。虽然无源观测站不同,针对同一目标的方位角和俯仰角数据也不同,但它们有共同的倾斜角。基于此,提出了基于倾斜角的多目标测向无源定位算法。该算法分别计算一组与多个目标对应的倾斜角,然后利用倾斜角最接近原则对这2组数据进行关联判断,解决多目标测向数据的关联和定位问题,并通过仿真实验,对算法的有效性和可行性进行了验证。  相似文献   

20.
We address the classical bearings-only tracking problem (BOT) for a single object, which belongs to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte-Carlo methods (particle filtering) have been proposed. As far as performance analysis is concerned, the posterior Cramer-Rao bound (PCRB) provides a lower bound on the mean square error. Classically, under a technical assumption named "asymptotic unbiasedness assumption", the PCRB is given by the inverse Fisher information matrix (FIM). The latter is computed using Tichavsky's recursive formula via Monte-Carlo methods. Two major problems are studied here. First, we show that the asymptotic unbiasedness assumption can be replaced by an assumption which is more meaningful. Second, an exact algorithm to compute the PCRB is derived via Tichavsky's recursive formula without using Monte-Carlo methods. This result is based on a new coordinate system named logarithmic polar coordinate (LPC) system. Simulation results illustrate that PCRB can now be computed accurately and quickly, making it suitable for sensor management applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号