首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
纤维隔热毡有效热导率测试方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
文摘纤维隔热材料热导率的测试是高马赫数可重复使用飞行器(RLV)金属热防护系统(TPS)研究中的一个难点。本文以NASALangley研究中心一维稳态有效热导率测试装置为依据,设计了测试温度达1 600℃、压力在1×10^-3-1×10^5Pa的高温石墨平板炉,并对该设备的设计原理、装置构造、测试方法以及数据采集等方面进行了讨论,对三种国内不同厂家生产的高温纤维隔热毡的有效热导率进行了测试。结果表明,该设备在经历一定时间的稳态处理后,获得了稳定的热流密度,进而得到不同温度下的一维稳态有效热导率。测试结果表明纤维隔热毡的有效热导率随温度的增加而增加,在高温下,辐射成为影响材料导热能力的主要因素。  相似文献   

2.
重复使用飞行器金属热防护系统的有限元分析与设计   总被引:5,自引:0,他引:5  
金属基热防护系统具有轻质、耐用、可操作性、成本高效等特点,是实现降低重复使用飞行器费用的一个关键技术。通过比较分析超耐热合金防热板和改进型防热板,给出了金属热防护系统的各个部分的设计准则。建立了蜂窝夹芯板和纤维隔热毡的有效热导率的数值预报模型,算例研究表明本文给出的数值预报方法正确。使用二维热分析模型和三维承载分析模型,实现了传热和承载分析的迭代计算,算例表明迭代方法有效、可行,可用于可重复使用飞行器金属热防护系统的分析与评价。  相似文献   

3.
研究了金属热防护系统(TPS)的缝隙辐射及支架两大热短路问题。通过数值计算分析了缝隙宽度和缝隙辐射率对热短路的影响,完成了整体样件以及阵列组合件的稳态传热实验测试,定量地研究了热短路的影响情况。实验结果显示:支架处热短路现象明显,实验中支架引发的热短路温差高达50K;在773K以下,缝隙传热引发的温升随着缝隙宽度的增加而线性增加;在773K以上,辐射热传导在缝隙宽度超过3mm时即成为内部传热的主导机制,这时缝隙传热引发的温升不再随宽度增加而线性递增。所提供的数值分析和实验方法可为金属热防护系统的分析与设计提供重要的参考价值。  相似文献   

4.
长时间气动加热飞行器的隔热机理   总被引:2,自引:3,他引:2       下载免费PDF全文
主要论述长时间气动加热飞行器热防护系统隔热机理的新概念,提出传统的单相固体热传导由于其隔热机制的局限性,已不能解决新型高超声速式飞行器的隔热问题,代之以气-固的辐射-传导-对流复合传热机制。多相复合传热机理可解决长时间气动加热飞行器隔热的问题。  相似文献   

5.
金属蜂窝夹芯板瞬态热性能的计算与试验分析   总被引:2,自引:1,他引:2  
 掌握热防护系统(TPS)中热结构超合金蜂窝面板在热环境下的传热隔热特性,是飞行器防热结构设计的先决条件。从镍基高温变形合金蜂窝板隔热试验出发,结合蜂窝板的试验和实际使用环境下的对流换热理论分析,建立了考虑夹芯的辐射、传导和对流传热形式的蜂窝面板的瞬态传热数值计算模型,得出镍基合金蜂窝板在高温下的防热特性。通过与试验结果进行对比,分析了试验误差和不同环境间的修正。讨论了部分蜂窝板设计参数对隔热效果的影响,得到了不同材料常数和蜂窝芯壁厚对隔热效果的影响规律。  相似文献   

6.
金属热防护系统多层隔热材料的稳态传热分析   总被引:9,自引:0,他引:9  
采用能量平衡方程和两热流密度近似法建立了金属热防护系统多层隔热材料的稳态传热的数学模型,并利用测量多层隔热材料单元的有效导热系数的实验和遗传算法对纤维隔热材料的辐射衰减系数和隔热屏表面辐射发射系数这两个热物参数进行了优化,最后用实验测得的多层隔热材料的有效导热系数验证了采用优化后参数的多层隔热材料的稳态传热模型的正确性.  相似文献   

7.
结合长时间非烧蚀热防护的技术需求,在固定壁面温度的条件下,对多孔材料传导-辐射耦合传热过程进行了模拟。结果表明:材料的隔热性能与材料的使用环境及内部结构密切相关,减小内部孔隙的特征尺寸,增加材料的密度和固体材料的比率有利于降低隔热材料的等效热导率,并延长材料达到热平衡的时间;同时达到平衡时,材料的背面温升与背面散热条件密切相关。  相似文献   

8.
可重复使用飞行器热防护系统辐射-传导复合传热分析   总被引:1,自引:0,他引:1  
赵玲  吕国志  任克亮 《飞机设计》2007,27(1):32-35,54
针对可重复使用飞行器再入过程中热防护系统的复杂辐射-传导传热问题,采用有限元方法并结合仿真软件ANSYS的参数化分析语言APDL,对可重复使用飞行器热防护系统进行参数化求解,模拟再入条件下热防护系统内部辐射和传导复合换热,预测内部瞬态温度响应。通过与试验数据的对比,验证了方法的有效性,并利用此方法对金属热防护系统进行热分析和质量优化。  相似文献   

9.
与常压环境地面试车相比,发动机高空模拟试车的热源分布更接近于实际飞行工况,本文通过搭载高模试车验证了高温隔热屏设计的正确性。通过考虑高温隔热屏层间气体导热和接触导热等,对高温隔热屏的传热模型进行了修正,其计算结果与高空模拟试车搭载试验结果的误差较小。在考虑真空引射背景红外辐射以及真空舱内气体与发动机及隔热屏的导热后,利用修订的高温隔热屏的当量热导率,进行了上面级高空模拟整机热分析,进一步提升了热模型的分析精度。  相似文献   

10.
高超声速飞机电子设备舱的温度场分析需要考虑外部气动加热、舱体热防护系统导热、内部热控系统传热,这三者之间相互影响,热耦合性强。目前对飞机电子设备舱的热分析研究尚没有针对这种热耦合的有效解耦算法。文中针对隔热型热防护系统和以液氮为热沉的相变热控系统为研究对象,建立了电子设备舱隔热层、电子设备、舱内温度场、液氮相变等热力学模型,实现热的解耦计算。完成了高超声速飞机电子设备舱温度计算,并开展了数值模拟方法与该方法的对比分析,表明该方法有效解决了气动加热、舱体热防护系统导热、内部热控系统传热三者间的热耦合计算问题,而且计算速度快、计算精度较高,可以满足概念设计阶段需要。  相似文献   

11.
In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities(ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation(MTI) is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.  相似文献   

12.
高超声速飞行器机动飞行时环境压力变化导致隔热材料沿厚度方向存在压力梯度,进而引起隔
热材料内气体的扩散渗透,影响隔热材料隔热性能。为研究气体扩散渗透对隔热材料隔热性能的影响,建立了
隔热材料内气体扩散渗透模型,采用罗斯兰德近似、有限体积法建立了隔热材料内扩散渗透及辐射导热传热计
算模型,对气体扩散渗透条件下的瞬态隔热性能进行了数值模拟。算例模拟结果表明:对2 cm 厚纳米隔热材
料,在外界气压为0. 1 MPa,绝热面为真空的状况下,当渗透率大于10-14 m2 时,气体扩散渗透开始影响隔热材
料内传热,导致隔热性能降低,气体黏性系数对气体扩散渗透有显著影响,随着黏性系数降低,气体扩散渗流现
象显著;衰减系数对绝热面温度响应有显著影响,随着衰减系数增大,绝热面温度响应显著降低。  相似文献   

13.
金属蜂窝夹芯面板有效导热系数的数值计算   总被引:1,自引:0,他引:1  
对具有漫灰体内壁的金属蜂窝夹芯面板,忽略蜂窝内腔的空气导热,综合考虑蜂窝结构的热传导和热辐射等热传递过程,利用有限元方法求解了周期性分布的蜂窝单胞稳态热传导控制方程,蜂窝内壁的边界条件是由净热量法得到的热辐射换热积分方程,由胞元的温度场分布数据及Fourier定律得到了蜂窝结构的有效导热系数。与现有文献相比,采用了较少近似的模型及较高精度的离散方法,计算结果表明计算模型及方法是可靠有效的。  相似文献   

14.
在分析了空间多层打孔隔热材料中导热和辐射的复合传热问题的基础上,提出了空间多层打孔隔热材料反射屏温度计算的模型以及内部辐射数值分析模型.利用该模型对不同几何、物理参数下的对象进行模拟计算,通过对计算结果的分析,明确作为几何参数的层密度和层数以及作为表面特性参数的黑度和打孔率对材料热性能的影响.该热性能的研究对提高空间多层打孔隔热材料的隔热效果,实现材料的优化设计具有积极的指导意义.  相似文献   

15.
为认识和掌握纳米隔热材料的热导率变化规律,以正硅酸乙酯(TEOS)为硅源、炭黑为遮光剂、石英纤维为增强体,采用溶胶-凝胶工艺结合超临界干燥技术制备了纳米隔热材料,并采用热导率测试仪、N_2吸附-脱附、SEM、激光粒度仪对材料进行了表征。测试结果表明:未添加炭黑的材料常压热导率随表观密度的变化以203 kg/m^3为分界点,分界点之前随表观密度的增大线性降低,分界点之后则随表观密度的增大线性升高,并且后一阶段较前一阶段变化快。孔隙率相同时,常压热导率随炭黑含量的增加先降低后稍有升高,极限真空热导率逐渐降低,而常压条件下的气相热导率增大。在半对数坐标系中,气相热导率随环境气压的下降而降低,并且依据降低速率可以划分为三个阶段,101.325~30 kPa之间下降最快,且变化值约为6 mW/(m·K);30~0.1 kPa之间下降较快,且变化值约为2 mW/(m·K);0.1~0.01 kPa之间下降最慢,且基本可以忽略不计。材料常压热导率最低值为16.62 mW/(m·K),添加5wt%的炭黑后可以进一步降低至14.50 mW/(m·K)。  相似文献   

16.
碳/碳复合材料导热性能的研究   总被引:7,自引:0,他引:7  
对碳/碳复合材料在不同温度下的导热性能进行了研究。研究发现了碳/碳复合材料的导热机理介于金属材料和非金属材料之间,既有声子导热,又有电子导热。在实验温度范围内,导热系数随温度升高而增大。随碳/碳复合材料石墨化程度的增大,晶体微观结构渐趋完整,石墨片层的有序度增加,材料的导热性能增强。对于高密度的碳/碳复合材料,因为晶粒间联通状态良好,热传导载体运动的路径畅通,所以导热系数高。碳纤维及围绕纤维生长的热解碳是热传导的有效通道,所以沿纤维增强方向的导热系数高。  相似文献   

17.
童自翔  李明佳  李冬 《航空学报》2021,42(9):625729-625729
复合材料高温传热特性的准确预测对飞行器热防护结构的设计有重要意义,相关模型也是国家数值风洞工程中多相多介质计算模型的重要组成部分。针对周期性结构复合材料的高温传热问题,利用多尺度渐进分析方法,对包含导热方程和辐射传输方程的导热-辐射耦合传热模型开展了研究。建立了表征单元尺度模型及宏观平均导热-辐射耦合传热模型,获得了材料宏观等效导热系数与表征单元模型间的关系,发现宏观等效辐射吸收和散射等系数可通过表征单元内的体积平均求取。结合有限容积方法与格子Boltzmann方法,建立了复合材料导热-辐射耦合传热多尺度数值模型。采用二维常物性材料传热过程的模拟验证了多尺度模型的有效性,结果表明所建立的多尺度模型能够对温度场给出准确高效的计算结果。该方法有助于为复合材料传热特性的预测提供数值手段。  相似文献   

18.
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,冷却剂比热容及金属固体物性随着温度而变化。计算采用标准k-ε双方程湍流模型及气-固耦合算法。结果表明:推力室燃气侧壁面的温度和热流密度的最高点均发生在喉部附近,喉部横截面固体区域最大温度梯度靠近燃气,喉部附近氢气在垂直主流方向的截面上产生了二次流。气固耦合面最大热流密度及最大对流换热系数同样位于推力室喉部附近。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号