首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
彭连松  郑孟宗  潘天宇  苏冠廷  李秋实 《航空学报》2021,42(7):124571-124571
蜻蜓在悬停飞行过程中,通过控制翅膀的运动规律,进行前后翅相位差为180°的扑翼运动。为了分析两对翅膀之间的干涉效应对悬停气动性能的影响,利用计算流体力学手段对蜻蜓悬停状态的串列扑翼和单对翅扑翼进行模拟。通过对两种模式下的流场进行分析,并计算对比了悬停效率、气动力及气动功率的数据,发现了悬停状态下翼间干涉的气动效应:尾迹集中效应和来流偏折效应。尾迹集中效应可以减少翅膀附近的涡耗散和尾迹耗散,提高悬停效率;来流偏折效应可以通过减小后翅在下拍过程中的来流攻角,从而降低前缘涡的尺寸和强度,降低悬停功率。数值结果表明:在运动规律相同的情况下,与单独拍动的前翅和后翅进行的悬停相比,串列双翅悬停的效率分别提高了18.6%和25.5%,功率分别降低了4.8%和14.0%。  相似文献   

2.
翼吊式发动机短舱是现代大中型飞机最常采用的气动布局形式,发动机短舱及挂架相对于机翼的展向位置、弦向位置、垂向位置、内偏角、安装角均会对它们之间的流场产生影响,进而影响全机的气动特性。本文采用CFD数值计算的方法,对翼吊长涵道发动机短舱的内偏角进行优化分析。对比分析了不同内偏角时,高速巡航状态的干扰阻力和低速大迎角状态的失速特性,研究了高速巡航时挂架内侧出现高负压峰值的机理,以及不同剖面形状的挂架对内偏角优化的影响。计算结果表明:内偏角-0.5°、0°和0.5°时,干扰阻力及升力损失较小,不同剖面形状的挂架不会对内偏角优化结果产生较大影响,但可以减小挂架内侧的负压峰值。本文得出的结论对工程上翼下吊挂外挂物有一定的指导意义。  相似文献   

3.
为了确定实际飞行使用条件下,发动机状态变化时,进排气系统损失对飞机气动特性的影响,本文针对翼吊短舱形式的发动机开展了缩比模型风洞试验,分别进行了基本构型与起飞构型下,马赫数0.1、0.15、0.2,攻角0°~15°变化,5种不同发动机状态条件下的风洞试验,通过数据分析,明确了该类型发动机推/阻力划分的基本方法,分析了发动机状态变化时飞机气动特性的改变及修正方法。风洞试验结果表明:发动机状态变化对飞机升阻特性影响明显,飞机设计研发阶段不能仅对短舱通流模型,或单一发动机状态下的动力短舱模型进行损失修正,必须建立合理的推/阻划分体系,对实际使用条件下,发动机状态变化引起的进排气损失进行修正。  相似文献   

4.
基于CFD/CSD方法的蜻蜓柔性翼气动特性分析   总被引:1,自引:1,他引:1  
给出了一种基于计算流体力学/计算结构力学(CFD/CSD)的双向流固耦合方法.通过交替数字二叉树(ADT)搜索技术识别流固网格之间的宿主-受体关系.采用局部插值算法完成两套网格系统之间的数据交换,并使用Delaunay图映射方法来完成气动网格的移动.将自编的非线性结构有限元程序、接口程序与南京航空航天大学(NUAA)微型飞行器中心的流体计算程序3D2MUFS相连接,应用于蜻蜓柔性翼拍动飞行的气动计算中.计算结果表明:柔性变形使得蜻蜓翼的时均举力系数从0.31提高到0.53,时均推力系数从0.07提高到0.13,证实了柔性变形能改善扑翼的气动性能.   相似文献   

5.
郭耀滨 《航空学报》1990,11(12):528-533
 使用能单独测量鸭翼部分气动力的“鸭翼天平”及全机气动力天平,对一可组拆的鸭式布局模型进行了干扰气动力的实验研究。发现在α<20°时鸭翼与主翼间的干扰是不利的,使升力下降。α>32°时干扰变得有利。α=32°时干扰升力可占到总升力的24%。若主翼为前掠翼,构成鸭式布局的气动特性更好。  相似文献   

6.
倾转四旋翼飞行器垂直飞行状态气动特性   总被引:2,自引:1,他引:1  
综合采用基于滑移网格技术的计算流体力学(CFD)方法与悬停状态气动干扰试验方法,对倾转四旋翼(QTR)飞行器垂直飞行状态的流场进行模拟与试验,研究飞行器垂直飞行状态气动特性以及部分参数对气动特性的影响.结果表明:倾转四旋翼飞行器在垂直飞行状态,前后旋翼之间干扰不明显,但旋翼与机翼的干扰明显;旋翼旋向对旋翼与机翼的干扰不...  相似文献   

7.
可折叠翼变形飞行器气动特性研究   总被引:1,自引:0,他引:1  
本文设计了一种可折叠翼概念无人机的变形飞行器模型,提出了一种变形飞行器气动系数的定义,通过数值计算,对比了飞行器变形前后以及不同内翼折角状态下的气动特性,分析了飞行器气动系数与内翼折角、迎角以及飞行马赫数的变化关系。  相似文献   

8.
褶皱结构是否能对蜻蜓后翅气动性能产生正面的影响,对蜻蜓后翅气动性能的影响是否与雷诺数(Re)相关。建立接近真实蜻蜓后翅的三维蜻蜓后翅褶皱模型和拥有同样外形的三维平板模型,利用计算流体力学方法分别计算两个模型在不同Re、不同攻角(α)下滑翔飞行时的气动特性。结果表明:褶皱结构的存在会明显提高蜻蜓后翅的升力,但是同时也会增大其阻力;不同Re情况下,褶皱结构对蜻蜓后翅气动性能的影响不同,当Re=1 000,α=0°~25°时,蜻蜓后翅的气动效能始终略优于三维平板;褶皱结构对蜻蜓后翅气动特性的影响与α也相关,α较大时蜻蜓后翅的气动效能略优于三维平板。  相似文献   

9.
王略  章仲安 《航空学报》1995,16(6):692-695
 在鸭式布局的基础上 ,对飞行器各部件及部件间的连接方式进行了外形隐身设计。对初步形成的鸭翼 -翼身融合体改变机身头部形状和立尾配置等进行 RCS优化。给出了飞行器各种状态下的 RCS平均值和迎头± 45°区内的 RCS值。测试结果表明 ,尖头机身、 30°双立尾 (立尾与垂直平面成± 30°角 )的鸭翼 -翼身融合体的 RCS值最小。对 RCS优化后的外形 ,风洞测力试验表明其气动性能也较好 (最大升阻比达到 8,失速迎角超过 2 6°)  相似文献   

10.
以二维刚性约束条件下的微型扑翼飞行器模型为研究对象,在动网格技术基础上,应用非定常数值分析手段对比分析了单翼/纵列翼布局的气动性能,深入研究了纵列翼缩减频率、扑翼—尾翼无量纲水平间距、来流攻角对其气动性能的影响.结果表明:①纵列翼尾翼对扑翼产生正效应干扰,相对于单翼布局,扑翼—尾翼无量纲水平间距为0.5倍翼型弦长时的纵列翼布局的推力系数和推进效率分别增加28.7%和5.7%;②缩减频率是影响推力的关键参数,随着缩减频率的增加,脱落涡的强度增加,推力系数增大.对于单翼、纵列翼两种布局模式,当缩减频率在1.0附近时推进效率达到最优;③对于纵列翼布局,在扑翼—尾翼无量纲水平间距为1.1倍翼型弦长时推进效率达到峰值;④在0°~20°来流攻角变化范围内,随着来流攻角的增加,升力系数增加,推力系数减小,当来流攻角大于9°时,两种布局的推力均为负值.   相似文献   

11.
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.  相似文献   

12.
唐海敏  杜厦  傅建明  李欣益 《航空学报》2018,39(5):121701-121701
针对大长细比飞行器外形超声速大迎角条件下前置小翼展开过程引起的非定常问题,应用结构动网格技术和基于脱体涡模拟(DES)的非定常数值模拟技术进行了研究,获得了详细的小翼展开过程流场结构非定常变化特性,并分析了小翼展开引起的法向力、纵向压心系数等气动特性随展开角度的变化规律。研究结果表明:超声速大迎角条件下前置小翼展开过程对小翼附近区域以及尾舵区域产生了强烈的干扰影响。小翼完全展开后,压心前移4.1%,降低了飞行器静稳定性,法向力系数增加15.6%,提高了气动过载,对飞行器机动性能均产生有利影响。  相似文献   

13.
陈尹  顾蕴松  孙之骏  黄紫 《航空学报》2021,42(3):124138-124138
飞行器在大迎角飞行状态下其复杂绕流流动会导致非指令运动出现,严重影响了飞行器的操纵性与飞行安全。现有以惯性元件为核心的机载设备无法直接提供非定常气动力参数,而如何实时感知飞行器大迎角状态的非定常气动力/力矩,是抑制非指令运动现象的核心所在,将是未来战机设计中亟待解决的空气动力学和飞行控制的关键问题之一。针对上述问题,提出基于翼面压力信息获取特征截面滚转力矩系数Clsec,估算飞行器全机在大迎角状态下的非定常气动力矩,进而判断飞行器的滚转运动的设想。风洞和飞行试验研究结果表明:对于80°/48°双三角翼,0.8c特征截面滚转力矩系数Clsec与模型滚转力矩存在相关性;在飞行器进行大迎角平飞动作时,非指令滚转运动下的滚转力矩系数Clsec大幅增加;Clsec能够比惯性传感器提前预测模型的滚转运动趋势,可为飞行器大迎角状态的非指令运动抑制提供一定数据依据。  相似文献   

14.
多旋翼飞行器涡环状态数值模拟   总被引:2,自引:1,他引:1  
旋翼类飞行器在进入涡环状态时极易发生安全事故。采用基于非结构网格的滑移网格技术对多旋翼飞行器的气动特性进行了数值模拟,并进行了试验验证。分别模拟了多旋翼飞行器垂直下降状态和30°斜向下下降状态时的流场,得到该状态下多旋翼飞行器的气动特性和滑流区流场规律,并分析了力与功率的变化规律。研究发现:多旋翼飞行器在垂直下降状态和30°斜向下状态均会进入涡环状态,在垂直下降速度为4 m/s时,多旋翼飞行器已经处于涡环状态,旋翼的拉力损失会达到15%,旋翼功率随下降速度的增大先增大后减小,且不同旋翼拉力大小和功率大小不一致。当30°斜下降速度为4~6 m/s时,多旋翼飞行器处于涡环状态。该结论可为多旋翼无人机的安全飞行提供参考。  相似文献   

15.
提出一种上下错开的无尾联接翼,即前翼或者后翼上反一定角度,使得前后翼垂直方向的相对距离从翼根处开始到翼梢处逐渐增大,以达到减小前后翼气动干扰的目的,搭接的小翼具有翼梢小翼作用,可有效减小诱导阻力。采用基于RANS方程的数值方法,研究了前后翼分别上反10°,20°和30°时对总体气动特性的影响,结果表明,当前翼上反且上反角为30°时其联接翼系统气动性能最佳。对该联接翼布局在Ma=0.85,0.95和1.20下进行了数值分析,结果表明,其升力系数变化较小,阻力系数在Ma0.85后才急剧增大,有应用于未来跨声速/超声速客机布局的潜力。  相似文献   

16.
Unsteady aerodynamics and flow control for flapping wing flyers   总被引:13,自引:0,他引:13  
The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (104–105) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed variation to achieve active flow control for MAVs. Finally, an explanation for aerodynamic gains seen in flexible versus rigid membrane wings, derived from an unsteady three-dimensional computational fluid dynamics model with an integrated distributed control algorithm, is presented.  相似文献   

17.
机翼动态气动特性实验研究   总被引:1,自引:0,他引:1  
介绍了动态特性风洞实验的技术方案、测试系统和测试软件。对前缘后掠60°的三角翼在迎角0°~90°范围内快速上仰时的升力进行了测量。结果表明:机翼快速上仰时,随上仰速率增大最大升力系数增高,即动态升力效应更明显;失速迎角也增大。此外,给出了简缩频率、平均迎角、振荡振幅以及俯仰轴位置等对振荡机翼产生的非定常瞬时力的影响  相似文献   

18.
旋转机翼飞机旋翼模式前飞状态干扰气动特性   总被引:1,自引:0,他引:1  
孙威  高正红  姜杰出 《航空学报》2016,37(8):2498-2506
和传统直升机相比,旋转机翼(CRW)飞机在旋翼模式前飞时各部件之间存在更为严重的气动干扰。为了获得旋转机翼/机身/鸭翼/平尾之间的非定常气动干扰规律,基于运动嵌套网格技术,通过求解三维非定常雷诺平均Navier-Stokes(URANS)方程,建立了旋翼前飞流场数值模拟方法。首先对传统直升机旋翼/机身干扰模型进行了计算,验证了方法的可靠性,然后对某旋转机翼飞机全机在旋翼模式前飞状态下的非定常流场进行了数值模拟,并对各个气动部件上的非定常气动力和力矩的变化进行了分析。结果表明:飞机在旋翼模式前飞时,机身部件对旋转机翼的干扰较弱,在经过机身上方时拉力峰值仅略有增加;旋转机翼对鸭翼和垂尾干扰较弱,对机身和平尾干扰较强,随着前飞速度增大,旋转机翼对平尾的干扰会产生较大的升力损失和抬头力矩,需要引起重视。计算结果为该类飞行器的总体综合设计提供了参考。  相似文献   

19.
大展弦比柔性机翼结构重量轻、气动效率高,广泛应用于高空长航时无人机(UAVs)。飞行过程中,这类机翼在气动力作用下发生大变形,线性结构模型不再适用,需要建立考虑几何大变形的结构模型。采用牛顿力学方法推导了考虑结构几何非线性的机翼结构动力学模型,该方法推导过程简洁、物理意义明确,可以与Hodges基于哈密顿原理的推导方法相互补充,相互验证。为了能够更准确地求解大展弦比柔性机翼的非定常气动力,建立了能够考虑机翼三维效应且适用于机翼空间大变形的非定常气动力模型。基于建立的非线性结构模型和非定常气动力模型,采用松耦合方法建立了非线性气动弹性模型,并通过算例验证了气弹模型的准确性。研究结果表明,大展弦比柔性机翼颤振速度对来流迎角和机翼的展长均较为敏感;当来流速度大于颤振速度时,由于几何非线性,机翼振动并未发散而是形成稳定的极限环振荡(LCO);随着来流速度进一步增加,机翼再次穿过临界稳定点,由不稳定系统变为稳定系统,直到随着速度的增加系统再次达到临界稳定状态。  相似文献   

20.
孙茂  吴江浩 《航空学报》2002,23(5):385-393
 用数值模拟方法研究了昆虫前飞时的气动力和需用功率。由N S方程的数值解提供速度场和压力场,从而得到涡量、气动力和力矩 (惯性力矩用解析方法计算 )。基于流场结构,解释了非定常气动力产生的原因;基于气动力和力矩,得到需用功率。悬停飞行中揭示出的 3个非定常高升力机制 (不失速机制,拍动初期的快速加速运动,拍动后期的快速上仰运动 )在前飞时仍然适用 (即使在快速前飞时,V∞ =2~ 2.5m/s,失速涡也不脱落 )。在低速飞行时 (V∞ ≈ 0.5m/s)平衡重量的升力既来自于翅膀的下拍运动也来自于上挥运动,并主要由翅膀的升力贡献;克服身体阻力的推力主要来自于翅膀的上挥运动,由翅膀的阻力贡献。在中等速度下 (V∞ ≈ 1.0m/s),升力主要来自于下拍运动,其中一半由翅膀升力贡献,一半由翅膀阻力贡献;推力主要来自上挥运动,也是一半由翅膀升力贡献,一半由翅膀阻力贡献。在快速飞行时 (V∞ ≈ 2.0m/s),升力主要来自于下拍运动,主要由翅膀阻力贡献;推力来自上挥运动,主要由翅膀升力贡献。悬停时,下拍和上挥做功同样大;前飞时,下拍做功较上挥大得多 :V∞ =0.5,1.0和 2.0m/s时,下拍做的功分别是上挥的 1.6,2.6和 3.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号