首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TUS (Tracking Ultra-violet Set up) space fluorescence detector has to be launched in 2010 as a separated platform in Foton (Bion) mission prepared by the Samara enterprise. This detector was designed for another satellite and the updated variant of the TUS detector for a new platform is presented. The data on UV glow of the atmosphere obtained in operation of one pixel of the TUS detector on board the Moscow State University “Universitetsky-Tatiana” satellite was taken into account in design of the updated TUS detector. The data on UV transient flashes registered in “Universitetsky-Tatiana” mission are of special interest. Electronics of the TUS detector able to select and register different types of UV events in the atmosphere is presented.  相似文献   

2.
Two special measurements of the energy exchange between earth and space were made in connection with the FGGE. A global monitoring program using wide-field-of-view and scanner detectors from NASA's NIMBUS-7 satellite successfully returned measurements during the entire FGGE. This experiment system also used a black cavity detector to measure the total energy output of the sun to very high precision. A second set of high frequency time and space estimates of the radiation budget were determined from selected geostationary satellite data. Preliminary results from both radiation budget data sets and the solar “constant” measurements will be presented.  相似文献   

3.
Fluorescence detectors of ultra high energy cosmic rays (UHECR) allow to record not only the extensive air showers, initiated by the UHECR particles, but also to detect light, produced by meteors and by the fast dust grains. It is shown that the fluorescence detector operated at the mountain site can register signals from meteors with kinetic energy threshold of about 25 J (meteor mass  5 × 10−6 g, velocity  3 × 106 cm/s). The same detector might be used for recording of the dust grains of smaller mass (of about 10−10 g) but with velocity 109 cm/s, close to the light velocity (sub-relativistic dust grains). The light signal from a sub-relativistic dust grain is expected in much shorter time scale (∼0.001 s), in comparison with the meteor signal (∼0.1–1 s), and much longer than duration of the UHECR signals (tens of μs). The fluorescence detector capable to register various phenomena: from meteors to UHECR – should have a variable pixel and selecting system integration time. A study of the new phenomenon of sub-relativistic grains will help to understand the mechanism of particle and dust grain acceleration in astrophysical objects (in SN explosions, for example).  相似文献   

4.
论述了空间积分声光相关器对脉冲调制连续波信号的瞬时响应,分析了从实时光电检测器中检测出的波形,该波形是脉冲宽度,加权函数参量和与脉冲位置相关的空间衍射光分布的函数。进一步提出了脉冲序列相关时的光分布关系并通过实验加以论证。  相似文献   

5.
A directional detector for γ-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a Uniformly Redundant Array (URA), allows imaging in 4° square sky bins over a 16° X 24° field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within ?1°. A complementary “anti-mask” greatly reduces systematic effects arising from non-uniform background rates amongst the detectors. The telescope has an effective area of 190 cm2 and an energy resolution of 19.5% FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the “anti-mask”, are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.  相似文献   

6.
利用软件无线电技术设计了一种电离层多普勒接收机. 该接收机采用DSP, FPGA等数字芯片与PXI总线进行架构, 使用GPS作为接收机的时间和频率同 步模块, 能够灵活设置系统参数. 实验接收来自中国蒲城陕西天文台的高 频时间信号, 实时获取由于电离层扰动所产生的多普勒频率偏移信息. 使用通过MATLAB语言实现的信号处理软件平台, 对接收到的高频信号进行处理. 观测结果表明, 接收机能够分析电离层回波信号的多普勒频移随时间的变化, 是获取不同空间尺度电离层扰动信息的一种有效手段.   相似文献   

7.
为了分析不同探测方式下地气光辐射对空间目标成像特性的影响,利用卫星仿真工具包(satellite tool kit,STK)设计了一个以地球同步轨道(geosynchronous orbit,GEO)卫星与中轨道(medium orbit,MEO)卫星上搭载的可见光成像器为探测平台,以高椭圆轨道(highly elli...  相似文献   

8.
In radiation detector signal processing, usually, the charge-sensitive preamplifier converts the small charge signal coming from the semiconductor-based detector into voltage form and then the signal is further amplified to measure the energy of the incoming radiation. The voltage pulse from a charge-sensitive preamplifier (CSPA) is amplified using a shaping amplifier which reduces the signal bandwidth. To achieve better energy resolution, precise measurement of the peak amplitude of shaping amplifier output is required. The signal processing methods are available in which the signal from the charge-sensitive preamplifier can be directly digitized using high-speed Analog to Digital Converters (ADC), and then further signal processing such as gain and shaping is carried out inside the Field Programmable Gate Arrays (FPGA). For multiple detector systems, digital signal processing methods are quite difficult to implement in Field Programmable Gate Arrays (FPGA). In this context, The development of an alternative technique is initiated that uses a charge-sensitive preamplifier, shaping amplifier, low sampling analog-to-digital converter, and FPGA, where LaGrange’s interpolation technique is implemented in FPGA to precisely measure the peak of the analog pulse. In this paper, the comparison of the proposed method with other pulse amplitude measurement techniques is discussed. Results show that the implemented technique gives similar energy resolution compared to digital pulse processing and standard peak detector-based techniques.  相似文献   

9.
The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.  相似文献   

10.
The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA Biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plastic nuclear track detectors to correlate fluence of HZE particles with genetic events. This configuration was used to isolate mutations in a set of 350 essential genes as well as in the unc-22 structural gene. From flight samples 13 mutants in the unc-22 gene were isolated along with 53 lethal mutations from autosomal regions balanced by a translocation eT1(III;V). Preliminary analysis suggests that mutants from worms correlated with specific cosmic ray tracks may have a higher proportion of rearrangements than those isolated from tube cultures on a randomly sampled basis. Right sample mutation rate was approximately 8-fold higher than ground controls which exhibited laboratory spontaneous frequencies.  相似文献   

11.
Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.  相似文献   

12.
Radiation effects of cosmic ray nuclei are generally described as a function of the particle LET. For a large number of space missions LET spectra have been measured and models have been developed to calculate these spectra that include the effects of geomagnetic shielding and shielding provided by material. In this paper we compare measured and calculated LET spectra. For low earth orbits events with high local energy deposition, i.e., short range secondaries, contribute significantly to the measured spectra. These events are produced by nuclear interactions, mainly induced by protons from the south atlantic anomaly. The technique to include these contributions in the models depends on the size of radiation sensitive volumes. For sizes comparable to or larger than the range of target secondaries it is essential to separate contributions by target interactions from those of cosmic rays. This separation is possible in experiments which use stacks of plastic nuclear track detectors. The yield of short range events generated by protons and measured in the detector can be calibrated from accelerator experimental data. We present first results for CR-39 detectors.  相似文献   

13.
针对星敏感器在近地空间导航应用需求,开展了短波红外恒星探测信噪比分析方法研究。基于恒星目标与天空背景辐射特性,构建了恒星探测信噪比模型,并结合光学系统及图像传感器参数完成了仿真试验。结果表明,同一星等及太阳天顶角下,Ks波段下的恒星探测信噪比最大,H波段次之,J波段最小;同一太阳天顶角及波段下,星等越小,恒星探测信噪比越大;同一星等及波长下,太阳天顶角越大,即恒星与太阳之间角距越大,恒星探测信噪比越大。本文可为新一代近地空间全天时星敏感器系统的方案设计、指标论证、评估应用提供可靠的理论方法与技术支持。  相似文献   

14.
Zodiacal light is examined as a “foreground noise” limiting the space photometry of faint objects. Emphasis is given to the ways of increasing the signal to noise ratio by an appropriate choice of observational epoch. In the case of the Space Telescope, predictions of average values of this ratio for the extreme faintness case V = 28 are derived from the expected performances announced by NASA and from the recent table of zodiacal brightnesses, as obtained from observations at Tenerife ([1], table 2).  相似文献   

15.
高动态环境信号的捕获是GPS接收机的关键技术,接收机处于高速运动的状态使GPS信号产生相位延迟和多普勒频移,增加了信号的捕获难度。分析了滑动相关捕获和基于FFT捕获两种算法,给出了基于FFT捕获算法的FPGA实现架构,并采用GPS信号仿真器对该设计的可行性进行了捕获验证。结果表明:在导航星相对载体的速度为1 000m/s,加速度为5g的情况下,基于FFT捕获算法可以实现信号的可靠捕获。  相似文献   

16.
Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth’s atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62?cm?×?7.62?cm and another one is rectangular cuboid of 10.16?cm?×?10.16?cm?×?40.64?cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events.For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector’s response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors, especially for the experiments conducted during daytime such as solar eclipses etc.  相似文献   

17.
MBOC调制信号是Galileo和GPS系统的互操作导航信号调制方式。在研究MBOC调制信号产生机理的基础上,对MBOC调制信号的特性进行了分析,并在现场可编程门阵列(FPGA)平台上实现了MBOC调制信号,给出了仿真和测试结果。实验表明,该实现方式正确可行,对于新的导航信号结构的研究和新一代接收机的研制具有极其重要的意义。  相似文献   

18.
光离子化技术在肼类气体监测中的应用   总被引:2,自引:0,他引:2  
肼类化合物是一种广泛应用于航天领域的液体火箭燃料。如在运输或操作中不慎泄露 ,可造成严重的环境污染 ,甚至会危害人员的生命健康。文章介绍了光离子化检测器在肼类气体监测中的应用 ,阐述了监测仪的设计思想。该仪器采用了光离子检测器 ,使其具有结构紧凑 ,体积小 ,质量小等特点。监测仪可对周围环境中肼类气体浓度的变化进行实时监测 ,并能自动予以声、光报警。实际使用表明 ,使用了光离子检测器的监测仪便于携带 ,监测准确度高 ,性能稳定 ,操作简单 ,既适用于野外现场监测 ,也适用于室内环境监控。  相似文献   

19.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   

20.
The time has come to give serious thought to the use of the International Space Station (ISS) as a space platform to advance remote sensing research in several scientific disciplines. The European scientific community has been developing instrumentation for deployment on the ISS for some time now. Recently, NASA opened competitions for scientific programs to be supported as “Missions of Opportunity” to utilize the “EXPRESS Pallet” facility on the ISS. A single EXPRESS Pallet has the capability of carrying a collection of instruments similar to the payload of a conventional satellite. A major difference between ISS and satellite programs is that the research funding will be expended on scientific instrumentation and analysis and not on a spacecraft, launch vehicle, and flight operations. As the ISS becomes fully operational, EXPRESS Pallets could be deployed in short periods of time compared to preparing a satellite program. The ability to retrieve, improve, and re-fly an instrument is important to a progressive research program. This allows the experiment to be responsive to data analysis in a timely manner and also keep pace with developing technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号