首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The SAM II and SAGE satellite systems have provided to date more than 5 years and almost 3 years, respectively, of data on atmospheric aerosol profiles on a near-global scale. Studies with these unique data sets are developing a global aerosol climatology for the first time and have shown the existence and quantification of polar stratospheric clouds (PSC's) and tropical stratospheric cirrus. In addition, a tropospheric cirrus climatology is evolving. Since these two experiments were launched, a series of large volcanic eruptions have occurred which have greatly impacted the stratospheric aerosol loading. The aerosol layer produced by the eruption of El Chichon, for example, increased the 30 mb temperatures in the northern tropics by as much as 4°C for 6 months after the eruption. This paper will describe in detail, from a climate perspective, the evolving aerosol and cloud climatologies as a function of space and time, and show the stratospheric dynamics of volcanic injections and their enhancements on stratospheric optical depth and mass loading.  相似文献   

2.
A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.  相似文献   

3.
Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal’s cultivation, steppes and bar soil.  相似文献   

4.
Surface changes and displacement caused by earthquake and volcanic activities can be detected by satellite radar interferometric technology using L-band JERS-1 SAR images. For the detection of the coseismic deformation of the Hyogoken-nanbu earthquake, interferometric analysis shows 0.6 meter surface displacement along the radar line-of-sight direction around Kobe City and 1.1 meter displacement in Awaji Island where epicenter is located. For the detection of volcanic body deformation in Iwo-jima, the analysis shows concentric circular subsiding displacement that agrees with the results of ground measurement.  相似文献   

5.
In April 1972 OAO-2 obtained broadband filter measurements of the Galilean satellites from 2100 to 4300 Å. All four bodies were shown to have low albedos declining towards shorter wavelengths, thus constraining the proportions of their surfaces that could be covered by reflective frosts. Although the vast data return from Voyager spacecraft has for the first time permitted a detailed comparison of Galilean satellites with terrestrial planets, it has not removed the need for continuing long time-base observations of the former. Since January 1978, IUE has repeatedly obtained Galilean spectra within the range 1150 to 3200 Å. Observations of Io have placed an upper limit on the global abundance of SO2 in its atmosphere. Spectral variations with phase have allowed spatial mapping of surface reflectance in the case of Io, and may enable volcanic activity to be monitored.  相似文献   

6.
In this paper we explore the possibilities of applying satellite ocean colour (OC) observations and SST to study the changes in the conditions of hypoxia in the near-bottom water in the western part of Peter the Great Bay. Near-bottom water hypoxia occurs in water bodies with increased organic matter influx when the dissolved oxygen (DO) consumed at its oxidation is not restored. Consumption of most DO is usually attributed to the oxidation of organic matter formed as a result of increased algae growth during water eutrophication. Satellite data on indicators of phytoplankton (chlorophyll-a concentration (Chl) and fluorescence (FLH)) allow to analyze the spatial-temporal changes of this substation. Coloured dissolved organic matter (CDOM), non-algal particles (NAP) influence on satellite Chl estimates and also on near-bottom water hypoxia formation. This study analyzes daily, seasonal, and inter-annual changes in the distributions of indicators (Chl, FLH, the coefficients of light absorption by coloured detrital matter (aCDM) and light backscattering by suspended particles (bbp)), based on the instant satellite OC data from MODIS-Aqua. Data on the Chl, the sea surface temperature (SST) from the MODIS-Aqua, the precipitation from the TRMM satellite and the hydrometeorological stations (HMSs), the wind speed and direction from HMS “Vladivostok” are used to study the influence of hydrometeorological conditions on the Chl values. These distributions were compared with the literary information based on field observations of the hypoxia cases in the same area and with the changes in the vertical DO, Chl, temperature, salinity distribution obtained by coastal expeditions in October-November 2010 and February-March 2011. Significant interrelations within 95% confidence level between the satellite Chl, FLH values calculated at the MUMM atmospheric correction and in situ Chl values obtained in the autumn of 2010 were reached separately for the cases with winds of northern and southern directions with the correlation coefficients of 0.71, 0.48 and 0.49, 0.71, respectively. Significant dependences of Chl on SST and Chl on wind speed explained by the influence of continental runoff and water ventilation were obtained. Therefore, the changes of Chl reflect the changes of hypoxic conditions in the near-bottom water. In Amursky Bay the onset of hypoxia was at the Chl and SST values equal to 4 mg m?3 and 13 °C (↑ – at increasing SST); near Furugelm Island it was at 1.6 mg m?3 and 25 °C (↑), 1 mg m?3 and 21 °C (↓). The difference in the Chl values was reflected in the hypoxia onset timings that were the beginning of June (2011), August (2013), and September (2014), respectively. The water flow from the eastern coast of Amursky Bay in early August of 2013 recorded from the OC and SST satellite imagers appeared in an additional hypoxic zone. Decreased OC characteristics in the runoff of the Razdolnaya River in August-September of 2014 were a sign of hypoxia at its mouth. Near Furugelm Island the hypoxia destruction (increase in the DO level from 1 to 4.5 ml L?1) was observed at the Chl of 0.9 mg m?3 and SST = 18 °C (↓). At the autumn maximum of Chl equal to 1.7 mg m?3 and SST = 4 °C (↓) in mid-November the DO level here increased to 8 ml L?1. In Amursky Bay, short-term destructions/weakening of hypoxia manifested themselves in sharp increases of Chl. At that, the ratio between the Chl value and the approximation level was equal to 2 and higher for SST equal to 22–25 °C (↑), to 0.9 and higher for SST equal to 5–13 °C (↓). With the water stratification destruction in temperature and the noticeable weakening of the stratification in salinity (mid-November), the hypoxia destructed (the DO level increased from 2 to 6 ml L?1). In this case, Chl and SST were about 3 mg m?3 and 5 °C (↓).  相似文献   

7.
To investigate the feasibility of new satellite observations, including air quality (AQ) observations from geostationary (GEO) orbit, it is essential to link the measurement precision (ε) with sensor specifications in advance. The present study attempts to formulate the linkage between ε and specifications of a UV/visible sensor (signal-to-noise ratio (SNR), full width at half maximum (FWHM) of the slit function, and sampling ratio (SR)) on a GEO satellite. A sophisticated radiative transfer model (JACOSPAR) is used to calculate synthetic radiance spectra that would be measured by a UV/visible sensor observing the atmosphere over Tokyo (35.7°N, 139.7°E) from GEO orbit at 120°E longitude. The spectra, modified according to given sensor specifications, are analyzed by the differential optical absorption spectroscopy technique to estimate the ε for slant column densities of O3 and NO2. We find clear relationships: for example, the ε of the O3 slant column density (molecules cm−2) and SNR at 330 nm are linked by the equation log(ε) = −1.06 · log(SNR) + 20.71 in the UV region, and the ε of the NO2 slant column density and SNR at 450 nm are linked by log(ε) = −0.98 · log(SNR) + 18.00, at a FWHM = 0.6 nm (for the Gaussian slit function) and SR = 4. The relationships are mostly independent of other specifications (e.g., horizontal and temporal resolutions), as they affect ε primarily through SNR, providing constraints in determining the optimal SNR (and alternatively FWHM and SR) for similar UV/visible sensors dedicated for AQ studies.  相似文献   

8.
Remote sensing applications have greatly enhanced ability to monitor and manage in the areas of forestry. Accurate measurements of regional and global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Study of vegetation phenology is required for understanding of variability in ecosystem. In this paper, monitoring of vegetation dynamics using time series of satellite data is presented. Vegetation variability (vegetation rate) in different topoclimatic areas is investigated. Original software using IDL interactive language for processing of satellite long-term data series was developed. To investigate growth dynamics vegetation rate inferred from remote sensing was used. All estimations based on annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Vegetation rate for Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) was calculated using MODIS data. The time series covers spring seasons of each of 9 years, from 2000 to 2008. Comparison of EVI and NDVI derived growth rates has shown that NDVI derived rates reveal spatial structure better. Using long-term data of vegetation rates variance was estimated that helps to reveal areas with anomalous growth rate. Such estimation shows sensitivity degree of different areas to different topoclimatic conditions. Woods of heights depend on spatial topoclimatic variability unlike woods of lowlands. Principal components analysis shows vegetation with different rate conditions. Also it reveals vegetation of same type in areas with different conditions. It was demonstrated that using of methods for estimating the dynamic state of vegetation based on remote sensing data enables successful monitoring of vegetation phenology.  相似文献   

9.
10.
Vegetation fractional coverage (VFC) is an important vegetation parameter affecting exchanges of carbon, water, energy between the atmosphere and surface. In this study, the applicability of tonal and texture measures calculated using an IKONOS_2 image in retrieving VFC of forests was investigated in the urban area of Nanjing city, China. Four spectral vegetation indices (VI) and six texture measures (TEX) were related to VFCs acquired from in situ measurements. Models for estimating VFC based on VIs or/and TEXs were established and validated for planted low broad-leaf forest plots (PLB), planted mature forest plots (PMF), natural broad-leaf forest plots (NBF), and all forest plots (ALLv), respectively. The results show that high spatial resolution remote sensing data is applicable to estimate VFC in urban areas, and TEXs may act as effective supplements of vegetation indices (VIs) for the retrieval of VFC. VIs are suitable for VFC estimation of mature forests (such as NBF and PMF) with high vegetation density, and TEXs can yield a more accurate estimate for planted forests (such as PLB and PMF) with regular spatial distribution if they are calculated with proper parameters, such as window size. The combination of VIs and TEXs improve the estimation of VFC if forest types are not previously differentiated. The results can be used as a reference for determining effective spectral or texture parameters in VFC estimation under similar environmental conditions according to vegetation maturity and regularity.  相似文献   

11.
Domes, an analog of the terrestrial shield volcanoes are one of the important volcanic features found on the lunar surface. Such volcanic features are windows to better understanding of the contrasting natures of lunar volcanism, giving an insight into the source and the nature of the basaltic magmas. Marius Hills Complex is one of the most important regions in the entire lunar surface for having a complex setting of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. As a part of initiation of the study of Marius Hills volcanism, an effusive dome located to the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is taken for the present study. Inferring from the Terrain Mapping Camera-Digital Elevation Model (TMC-DEM), the morphometric parameters are estimated (350 m in height, 9.62 km in diameter), and accordingly the rheological parameters are also estimated. As the signatures of multiphase eruption are not clear geomorphologically and also in topography, the dome is assumed to evolved in monogenetic eruption. The causative dike parameters of the dome are estimated, which gives upper bounds of true values of the parameters. The estimated feeder dike length (150 km) and width (233 m) implies that the source region is lying most probably in the mantle portion of moon. The crater size frequency distribution (CSFD) is applied to determine the age of the particular dome and also the surrounding mare surface so as to better construct a stratigraphic correlation. It is found that dome belongs to oldest age unit of Marius Hills region while the surrounding units are relatively younger. Using Chandrayaan-I Moon Mineralogy Mapper (M3) data, the surface composition for the study area is also analysed. Thus, the morphometry, rheology, dike parameters, age determination and mineralogy are found to be in good agreement with results of the earlier studies. Such a study, covering all the domes and other volcanic features in Marius Hills using high resolution data sets will provide a clear and better understanding of the volcanic history of the region and the Oceanus Procellarum Basin as well. In such a study, the application potential of high resolution Chandrayaan-I TMC image and its DEM generated from the stereo data has been useful.  相似文献   

12.
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.  相似文献   

13.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA’s Thermosphere–Ionosphere–Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 μm limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.  相似文献   

14.
Considering an arid area in the High Atlas mountains of Morocco, the assessment of vegetation cover is carried out from ground spectral measurements and analysis of satellite imagery. Ground measurements have been made with SPOT simulation radiometer; results are related to reflectance-vegetation coverage relationships and to spectral responses obtained at a local level (120m transects). Analysis of Thematic Mapper and SPOT data includes visual interpretation of color composite imagery for geomorphological units delineation, principal component analysis and examination of bispectral scatter plots.  相似文献   

15.
The satellite gravity gradiometric data can be used directly to recover the gravity anomaly at sea level using inversion of integral formulas. This approach suffers by the spatial truncation errors of the integrals, but these errors can be reduced by modifying the formulas. It allows us to consider smaller coverage of the satellite data over the region of recovery. In this study, we consider the second-order radial derivative (SORD) of disturbing potential (Trr) and determine the gravity anomaly with a resolution of 1° × 1° at sea level by inverting the statistically modified version of SORD of extended Stokes’ formula. Also we investigate the effect of the spatial truncation error on the quality of inversion considering noise of Trr. The numerical investigations show satisfactory results when the area of Trr coverage is the same with that of the gravity anomaly and the integral formula is modified by the biased least-squares modification. The error of recovery will be about 6 mGal after removing the regularization bias in the presence of 1 mE noise in Trr measured on the orbit.  相似文献   

16.
Pioneer Venus data from the first 5 years of operation show a decline by more than a factor of ten in SO2 at the cloud tops. A consistent decline has also recurred in the amount of sub-micron haze above the clouds. The correlation between these two observables is 0.8 over this period. A plausible explanation is injection of SO2 from episodic volcanism. The episodic behavior implies that steady state models of the Venus cloud chemistry and dynamics may be of limited use.  相似文献   

17.
In the present paper, plasma probe data taken from DEMETER and DMSP-F15 satellites were used to study the ion density and temperature disturbances in the morning topside ionosphere, caused by seismic activity at low latitudes. French DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) micro-satellite mission had been especially designed to provide global scale observations in the topside ionosphere over seismically active regions. Onboard the DEMETER satellite, the thermal plasma instrument called “Instrument Analyser de Plasma” (IAP) provides ion mass and densities, ion temperature, three component ion drift and ion density irregularities measurements. As a part of “Defense Meteorological Satellite Program”, DMSP-F15 satellite is on orbit operation since 1999. It provides ionospheric plasma diagnostics by means of the “Special Sensor-Ion, Electron and Scintillations” (SSIES-2) instrument. We examined few examples of possible seismic effects in the equatorial ionosphere, probably associated with seismic activity during December month in the area of Sumatra Island, including main shock of giant Sumatra event. It is found that the localized topside ionospheric disturbances appear close to the epicenters of certain earthquakes in the Sumatra region. In two cases, ion H+/O+ ratio rises more than one hour before the main shock, due to the O+ density decrease at the winter side of the geomagnetic equator, with longitudinally closest location to the epicenter of the earthquakes. These anomalous depletions in O+ density do exist in all cases of SSIES-2 data. Particularly for Sumatra main event, more than one hour after the main shock, we observe large-scale depletion in O+ density northward of the geomagnetic equator at winter side hemisphere. Associated with O+ depletion, ion temperature latitudinal profile around the geomagnetic equator shows enhanced asymmetry with minimum at the summer side and maximum in positive Ti deviation from mean value at the winter side. This disturbance lasted for more than three hours, later in time observed at the same place by IAP/DEMETER.  相似文献   

18.
The International Ozone Rocket Sonde Intercomparison (IORI) conducted at Wallops Island during October 1979 provided a unique opportunity to observe ozone variations in great detail from several observing systems. The measurement period lasted 15 days during which time ozone observations were taken by ground-based, balloon, rocket, and satellite instruments. These data provided a unique opportunity for diagnosing regional stratospheric variability over a 2 week period. Examination of NMC analyses indicated that during this period the stratospheric polar vortex moved southeastward bringing air from high latitudes to Wallops Island above 10 mb. A concurrent change was observed in the upper stratosphere ozone fields observed by Nimbus-7 SBUV and in the ozone vertical distribution measured by the rocket soundings. In this study the satellite and rocket measurements are compared. The agreement is good, certainly within the errors of the measurements.  相似文献   

19.
This paper presents the first results of a new Arar-magnetometer station located (Geographic Coordinates: 30°50.2′N, 41°11.3′E) at Northern Border University in Saudi Arabia. The geomagnetic response detected by the station during a moderate magnetic storm of April 20, 2018 is examined as an initial study. The X-component of the magnetic field measured by the station showed a prompt increase coincident with the Sudden Storm Commencement (SSC) measured by the ACE satellite. The three components of the measured magnetic field were compared to the measured data from the nearest four INTERMAGNET stations as a test. The high rate of magnetic field digital data system of Arar-Magnetometer station with sampling rate of 0.1 s allowed us to study the geomagnetic pulsation at the northern region of the Arabian Peninsula for the first time, which will promote the research of space weather monitoring in that area.  相似文献   

20.
The visible and near infrared channels, Ch1 and CH2 respectively, on the Advanced Very High Resolution Radiometer (AVHRR) provide daily information for monitoring changes in vegetation and crops. Data from these channels are used to create a normalized vegetation index (NVI) that is sensitive to changes in green leaf biomass and is represented mathematically by:
NVI = CH2 ? CH1CH2 + CH1
Operational products generated at NOAA include full-scale 1-km resolution images of the NVI covering areas viewed in a single swath of the polar-orbiting NOAA satellite. Global scale NVI images are also produced by compositing over a seven-day period, saving the maximum NVI created daily for each local array (resolution of 15 km at the equator to 30 km at the poles). Such seven-day mapping reduces the effect of cloud contamination. The global vegetation indices are used by foreign and U.S. government agencies for operational and experimental purposes such as assessment of crop conditions, monitoring potential desert locust breeding grounds, forest fire danger models, and monitoring range lands for forage availability. Examples include changes in the NVI in the Lake Chad vicinity, 1981–1982 and 1984; western United States NVI; and seasonal variations of the NVI in the Sahel using the global operational data base, 1982–1983.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号