共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1944-1949
The preliminary energy spectra of heavy nuclei C, O, Ne, Mg, Si, and Fe in the primary cosmic rays measured by the ATIC-2 experiment are presented and compared to previous data and to propagation models. Using previous data to extend the ATIC-2 results for all heavy nuclei to higher energy, the combined spectra can be best fit with diffusion model with weak reacceleration and scattering on random magnetic field with a Kolmogorov spectrum fluctuations becoming dominant at high energy. 相似文献
2.
3.
I. Ivanov Ts. Dachev Yu. Matviichuk D. Krezhova D. Gochev I. Rumchev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(7):93-95
On December 21-st, 1981, at 18.35 hours UT from the territory of the USSR (coordinates - 49°N/L 2/) in implementation of scientific objectives and in accordance with the ‘INTERCOSMOS’ Programme, there was launched the heavy geophysical rocket ‘VERTICAL-10’. The scientific payload included a low-energy two-channel spectrometer for measuring the differential flows of electrons and protons within the energy range 0.1 to 10 keV, covered by 15 exponentially distributed energy levels. 相似文献
4.
G A Bazilevskaya A B Stozhkov YuIStruminsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):717-720
Since the beginning of the 22nd solar cycle twenty solar proton events were observed by the regular balloon measurements of cosmic rays. Temporal changes of intensities and energy spectra of solar protons with energy 100-500 MeV were obtained. The strong influence of interplanetary shock waves on the proton flux characteristics near the Earth was observed. Possible effects of solar proton transport in the vicinity of shock fronts are discussed to explain the observational data. 相似文献
5.
G.I. Pugacheva A.A. Gusev T. Kohno I.M. Martin W.N. Spjeldvik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2319-2322
The results of measurements of absolute flux values and long term temporal evolution of the spatial distribution of trapped He ions in the energy range 1.2 – 9.2 MeV/nucleon below L = 4 are reported. The observations were made with ion counter on board the Japanese OHZORA satellite during the period of January 1984 through March 1987. 相似文献
6.
W Heinrich E V Benton B Wiegel G Rusch E Becker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):969-977
Radiation effects of cosmic ray nuclei are generally described as a function of the particle LET. For a large number of space missions LET spectra have been measured and models have been developed to calculate these spectra that include the effects of geomagnetic shielding and shielding provided by material. In this paper we compare measured and calculated LET spectra. For low earth orbits events with high local energy deposition, i.e., short range secondaries, contribute significantly to the measured spectra. These events are produced by nuclear interactions, mainly induced by protons from the south atlantic anomaly. The technique to include these contributions in the models depends on the size of radiation sensitive volumes. For sizes comparable to or larger than the range of target secondaries it is essential to separate contributions by target interactions from those of cosmic rays. This separation is possible in experiments which use stacks of plastic nuclear track detectors. The yield of short range events generated by protons and measured in the detector can be calibrated from accelerator experimental data. We present first results for CR-39 detectors. 相似文献
7.
A. Balogh G.A. Stevens 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):109-112
The problem of interplanetary acceleration of low energy protons in association with shock waves is examined in the context of the specific event observed on 11 February 1979 on board the ISEE-3 spacecraft. This event has been selected for special study as it apparently was not associated with a solar flare event. The low energy proton telescope system on ISEE-3 measures the proton distribution function with good spectral, directional and temporal resolution from Ep = 35 keV. The evolution of the anisotropies and of the energy spectrum during the event are consistent with particle acceleration taking place in the vicinity of the shock wave. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1454-1457
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV. 相似文献
9.
S. Peracchi B. James S. Psoroulas M. Grossmann D. Meer D. Bolst Z. Pastuovic J. Vohradsky S. Guatelli D.A. Prokopovich M. Petasecca M. L.F. Lerch M. Povoli A. Kok M. Jackson A.B. Rosenfeld L.T. Tran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(8):2534-2543
Radiation environments in space are mainly composed of protons coming from the Galactic Cosmic Rays (GCRs) pervading the universe, the Solar Particle Events (SPEs) resulting from solar flares and coronal mass ejections, and the two Van Allen Belts surrounding the Earth due to the presence of the geomagnetic field trapping charged particles. Their wide spectra of energies up to hundreds of GeV imply diverse radiobiological effects to astronauts and radiation damage to electronics in the spacecraft. Even if lower in abundance, heavy ions such as He, C, O, Si, Fe are present in space and constitute an even bigger hazard due to their high penetrability and high linear energy transfer (LET). Most irradiation facilities available for research and testing worldwide provide usually only monoenergetic beams of high-energy protons or other heavier particles limiting studies of radiobiological effects and effects on electronics to a set of discrete energies.This paper introduces a procedure where a proton fluence spectra of interest for space radiation protection, previously generated by Monte Carlo simulations was delivered using a clinical proton therapy accelerator. Particularly, it reports the first results of modelling a proton radiation field in space in the energy range from 70 to 230 MeV during a single experimental session by programming a treatment planning system (TPS) to deliver required proton irradiation energies. Moreover, the angular distribution of the proton irradiation field has been varied to reproduce the isotropic exposure experienced by humans in space. The obtained proton radiation field was characterized using a 3D sensitive volume SOI microdosimeter developed by the Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(4):27-32
The analysis of SIGNE experiment data shows that the theoretical laws we have tested assuming a single component continuum probably do not describe the real phenomenon of gamma emission and that there is a very fast spectral evolution, possibly on timescales down to 16 ms. Moreover we have not found a universal value of a for the relation F = (kT) α /3/, but rather a gradual decrease of the spectral hardness index during pulses. 相似文献
11.
Wei Yuan Jiyao Xu Yongfu Wu Jianchun Bian Hongbin Chen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Vertical profiles of ozone have been measured at balloon altitudes. Our purpose is to examine the character of vertical wavenumber spectra of ozone fluctuations, to assess the possible roles of gravity wave field in ozone fluctuations, and to determine dominant vertical wavelengths of ozone spectra. Vertical wavenumber spectra of 12 ozone fluctuations obtained during June–August 2003 are presented. Results indicate that mean spectral slopes in the wavenumber range from 4.69 × 10−4 to 2.50 × 10−3 cyc/m are about −2.91 in the troposphere and −2.87 in the lower stratosphere, which is close to the slope of −3 predicted by current gravity wave saturation models. The consistency of the observed spectral slopes with the value of −3 predicted by current gravity wave saturation models suggests that the observed ozone fluctuations are due primarily to atmospheric gravity waves. At m = 1/(1000 m) the mean spectral amplitude is over 30 times larger in the lower stratosphere than in the troposphere. Mean vertical wavenumber spectra in area-preserving form reveal dominant vertical wavelengths of ∼2.6 km in the troposphere and ∼2.7 km in the lower stratosphere, which is consistent with the values varying between 1.5 and 3.0 km estimated from the velocity field and temperature field at these heights. 相似文献
12.
R A Mewaldt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):737-747
Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays. 相似文献
13.
Ondřej Ploc Lembit Sihver Dmitry Kartashov Vyacheslav Shurshakov Raisa Tolochek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
“Protective curtain” was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose – reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors. 相似文献
14.
L. M. Kistler D. C. Hamilton F. M. Ipavich G. Gloeckler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):183-186
Using data from the CHEM instrument on the AMPTE/CCE spacecraft, we follow the development of the ring current energy spectra (1–300 keV/e) of the ion species H+, O+, He+, and He++ in the post-noon and pre-noon local time sectors during the geomagnetic storm of February 1986. By comparing displays of phase space density, f, vs. magnetic moment, μ, we can distinguish between enhancements due to newly injected ions and those due to adiabatic energization of a pre-existing population. In both the local time sectors, the initial drop in Dst is associated with enhanced phase space densities of all species. The spectra observed during the pass when the Dst dropped to a minimem of −312 nT show a strong local time asymmetry. In the post-noon sector, the spectra showed the influx of a new population of ions, rich in O+ and He++. In the pre-noon sector, the flux increase was consistent with adiabatic energization of the ion population injected earlier in the storm. This local time difference is consistent with a greatly enhanced convection electric field which brings a new population from the magnetotail to the post-noon, but not the pre-noon local time sector. 相似文献
15.
M. Casolino N. De SimoneV. Di Felice P. Picozza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):168-173
The PAMELA experiment is devoted to the study of cosmic rays in Low Earth Orbit with an apparatus optimized to perform a precise determination of the galactic antimatter component of c.r. It is constituted by a number of detectors built around a permanent magnet spectrometer. PAMELA was launched in space on June 15th 2006 on board the Russian Resurs-DK1 satellite for a mission duration of 3 years. The characteristics of the detectors, the long lifetime and the orbit of the satellite, will allow to address several aspects of cosmic-ray physics. In this work we discuss the observational capabilities of PAMELA to detect the electron component above 50 MeV. The magnetic spectrometer allows a detailed measurement of the energy spectrum of electrons of galactic and Jovian origin. Long term measurements and correlations with Earth–Jupiter 13 months synodic period will allow to separate these two contributions and to measure the primary electron Jovian component, dominant in the 50–70 MeV energy range. With this technique it will also be possible to study the contribution to the electron spectrum of Jovian e− reaccelerated up to 2 GeV at the Solar Wind Termination Shock. 相似文献
16.
A. Urban K.M. Torkar J. Bjordal J.A˚. Lundblad F. Søraas B. Grandal L.G. Smith J.C. Ulwick R.P. Vancour 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):77-80
Measurements of the precipitation of electrons and positive ions (in the keV to MeV range) detected aboard eight rockets launched from Northern Scandinavia are reported together with corresponding satellite data. The downgoing integral fluxes indicate the temporal fluctuations during each flight. Height profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance are given. 相似文献
17.
M. Amenomori X.J. Bi D. Chen S.W. Cui Danzengluobu L.K. Ding X.H. Ding C. Fan C.F. Feng Zhaoyang Feng Z.Y. Feng X.Y. Gao Q.X. Geng H.W. Guo H.H. He M. He K. Hibino N. Hotta Haibing Hu H.B. Hu J. Huang Q. Huang H.Y. Jia F. Kajino K. Kasahara Y. Katayose C. Kato K. Kawata Labaciren G.M. Le A.F. Li J.Y. Li Y.-Q. Lou H. Lu S.L. Lu X.R. Meng K. Mizutani J. Mu K. Munakata A. Nagai H. Nanjo M. Nishizawa M. Ohnishi I. Ohta H. Onuma T. Ouchi S. Ozawa J.R. Ren T. Saito T.Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
18.
J B Robertson J M Eaddy J O Archambeau G B Coutrakon D W Miller M F Moyers J V Siebers J M Slater J F Dicello 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):271-275
We have studied radiation effects utilizing the new 250 MeV Synchrotron at Loma Linda University Medical Center. In this paper we present the data collected for the survival of Chinese hamster lung (V79) cells, that were irradiated with a beam of mixed energy protons up to 200 MeV. The RBE for protons, when compared to 60Co gamma rays, ranged from a low of 1.2 at the high energy portion of the field to 1.3+ at the low energy portion of the field. These results are consistent with the measured lineal energy (microdosimetric) spectra. 相似文献
19.
P A Craven M J Rycroft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(2):300-304
Amongst the great variety of heavy particles present in the galactic and solar cosmic ray spectra, hydrogen and helium nuclei are significantly more abundant than all other heavier ions and, as such, represent a major radiation hazard to humans in space. Experimental data have suggested that differences in relative biological effectiveness (RBE) exist between the two species at the same value of linear energy transfer (LET). This has consequences for heavily ionising radiation protection procedures, which currently still assume a simple dependence of radiation quality on LET. By analysing the secondary electron (delta-ray) emission spectra of protons and alpha particles, in terms of the spatial characteristics of energy deposition in cellular targets and the likelihood of complex lesion formation, a numerical quantity representing biological effectiveness is generated. When expressed relative to a reference radiation, this quantity is found to differ for protons and a particles of the same LET, demonstrating not only the ion-specific nature of RBE but also the inadequacy of specifying radiation quality as a function of LET only. Such a method for numerically assessing radiation quality may have implications for procedures for heavy ion protection in space at low doses and for understanding the initial mechanisms of radiation action. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):605-610
The Ulysses mission has provided a wealth of data, particularly regarding the transport of low-energy cosmic ray electrons. These data have been used to derive significant constraints for the anisotropic spatial diffusion of these particles. Detailed model simulations allowed, in addition, to determine the relative contributions of galactic and Jovian electrons to the total flux at a given time and position in the heliosphere. Despite these insights, energy spectra have not been reliably determined as yet. This is a consequence of the uncertainty due to a background connected to proton interactions with the spacecraft. Recently, however, it was demonstrated that this uncertainty can, with some difficulty, be reduced, thus opening the opportunity to understand such spectra in the energy range 3–30 MeV, i.e., the part mostly dominated by Jovian electrons. We present results of a corresponding re-analysis of COSPIN/KET data. 相似文献