首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetospheric ions, solar wind ions, and locally produced pick-up ions can impact the atmospheres of objects in the solar system, transferring energy by collisions with atmospheric atoms and molecules. This can result in an expansion of the atmospheric corona with a fraction of the energetic atoms or molecules being lost (sputtered) from the atmosphere. The expanded corona presents a larger target to the incident plasma, which in turn enhances pick-up ion formation and collisional ejection. In this manner a significant flux of atoms or molecules can be lost from an atmosphere, affecting its long-term evolution. This has been shown to be an important process for the dynamics and evolution of the atmosphere of lo, which is bombarded by the Jovian magnetospheric plasma, and for loss of atmosphere from Titan. Sputtering by pick-up ion bombardment has been shown to remove material from the atmosphere of Mars affecting the observed isotope ratios, and energetic O+ precipitation affects the Earth's thermosphere. The physics of ion bombardment of a gas which leads to atmospheric sputtering is described here. Analytic expressions derived from transport equations are shown to be useful for estimating the sputtering rate. These are compared to results from transport and Monte-Carlo calculations.  相似文献   

2.
3.
The interaction of the solar wind with the local interstellar medium is characterized by the self-consistent coupling of solar wind plasma, both upstream and downstream of the heliospheric termination shock, the interstellar plasma, and the neutral atom component of interstellar and solar wind origin. The complex coupling results in the creation of new plasma components (pickup ions), turbulence, and anomalous cosmic rays, and new populations of neutral atoms and their coupling can lead to energetic neutral atoms that can be detected at 1 AU. In this review, we discuss the interaction and coupling of global sized structures (the heliospheric boundary regions) and kinetic physics (the distributions that are responsible for the creation of energetic neutral atoms) based on models that have been developed by the University of Alabama in Huntsville group.  相似文献   

4.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

5.
磁光阱是一种冷却陷俘原子的装置,磁光阱实验参数的优化是冷原子实验中基础且重要的工作,人工手动优化参数需耗费大量时间,且很难确保最终参数是全局最优的。基于贝叶斯优化的机器学习方法是一种对目标表达式未知、非凸、多峰的量子物理系统进行参数优化的有效方案,该过程通常远快于人工手动调节,且有更大概率找到全局最优值。提出了一种基于贝叶斯优化方法的冷原子多参数自主实时优化实验方案,该方案通过成本函数构造、控制程序编写、贝叶斯算法优化等形成一个可自主优化的闭环系统。实验结果表明,经过约30 min的迭代优化,所提方案可有效完成磁光阱系统的多参数优化,并得到最优的实验结果;所提方案验证了贝叶斯优化方法在多参数物理系统中应用的可行性,通过改进成本函数,还可应用于其他的复杂多参数实验物理系统最优参数快速确定。  相似文献   

6.
Atmospheric charged clusters are formed in a series of rapid chemical reactions after ionisation, leaving a central ion X+ or X? clustered with n ligands (Y) n . In solar system tropospheres and stratospheres there are two distinct cluster regimes: the terrestrial planets contain largely hydrated clusters (i.e. Y=H2O), whereas the gas planets and their moons have organic or nitrogenated cluster species. These classifications are largely based on model predictions, since hardly any measurements are available. The few existing composition measurements are reviewed, including the recent detection of massive charged particles in Titan’s upper atmosphere. Technologies for both remote sensing and in situ measurements of atmospheric charged clusters are discussed. Preliminary measurements in the terrestrial atmosphere are presented indicating that ambient charged cluster species interact with downwelling infra-red radiation at 9.15 μm, even in the presence of cloud. This supports the possibility of future infrared detection of charged clusters.  相似文献   

7.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/E1.5–3) instruments and focused on the morphology of x-rays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.  相似文献   

8.
The plasma physics of shock acceleration   总被引:1,自引:0,他引:1  
The notion that plasma shocks in astrophysical settings can and do accelerate charged particles to high energies is not a new one. However, in recent years considerable progress has been achieved in understanding the role particle acceleration plays both in astrophysics and in the shock process itself. In this paper we briefly review the history and theory of shock acceleration, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. We discuss in detail the work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks. We briefly describe some of the outstanding problems that still confront theorists and observers in this field.  相似文献   

9.
The magnetospheric O+ population in the 52–180 keV range during storms is investigated through the analysis of energetic neutral atom (ENA) images. The images are obtained from the high energy neutral atom (HENA) imager onboard the IMAGE satellite. At each substorm onset following the commencement of a geomagnetic storm the oxygen ENA display ~30 min intense bursts. Only very weak corresponding features in the 60–119 keV hydrogen ENA can be occasionally seen. The dominating fraction of the oxygen ENA emissions are produced when O+ ions mirror/precipitate at low altitudes, where the number density of the neutral atmosphere is high. During the storm we observed several bursts of oxygen ENA, but it is still not clear how much the O+ content of the ring current increases during the storm main phase. Our observations suggest that the responsible injection mechanism is mass-dependent and scatters the pitch angles. This leads us to favor a non-adiabatic mechanism proposed by (Delcourt, 2002).  相似文献   

10.
We describe a test of the equivalence principle with quantum probe particles based on atom interferometry. For the measurement, a light pulse atom interferometer based on the diffraction of atoms from effective absorption gratings of light has been developed. A differential measurement of the Earth’s gravitational acceleration g for the two rubidium isotopes 85Rb and 87Rb has been performed, yielding a difference Δg/g=(1.2±1.7)×10?7. In addition, the dependence of the free fall on the relative orientation of the electron to the nuclear spin was studied by using atoms in two different hyperfine states. The determined difference in the gravitational acceleration is Δg/g=(0.4±1.2)×10?7. Within their experimental accuracy, both measurements are consistent with a free atomic fall that is independent from internal composition and spin orientation.  相似文献   

11.
After one year of operation the GEOS-1 Ion Composition Experiment has surveyed plasma composition at all local times in the L range 3 8 and the energy per charge range from thermal to 16 keV/e. From measurements made in the keV range during eleven magnetic storms we find that the percentage of heavy (M/Q > 1) ions present in the outer magnetosphere increases by a factor of 3 to 10 during disturbances. We conclude that two independent sources (solar wind, characterized by 4He2+, and ionosphere, characterized by O+) give on the average comparable contributions to injected populations, although in a single event one or the other source may dominate. However, in magnetically quiet periods protons are the dominant species with a few percent of heavy ions. With the help of special satellite manoeuvres magnetic field aligned fluxes of 0.05-3 keV/e H+, He+, O+ with traces of O2+ have been observed which may be related to ion beams found previously at lower altitudes in the auroral zone. At still lower energies ( 1 eV/e) the thermal plasma population is found to be made up of six ion species, three of which, D+, He2+ and O2+, were unknown in the magnetosphere prior to the GEOS-1 measurements. We present here a study of the evolution of doubly charged ions and their parent populations over four consecutive days. Various production mechanisms for doubly charged ions are discussed. We argue that ionization of singly charged ions by UV and energetic electrons and protons is the dominant process for plasmasphere production. Furthermore, the observed high concentrations of O2+ at high altitudes are a result of production in the upper ionosphere and plasmasphere combined with upward transport by thermal diffusion. Throughout the 1 year lifetime of GEOS-1 the ICE functioned perfectly and, because of its novel design, a short review of technical performance is included here.  相似文献   

12.
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.  相似文献   

13.
The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on WIND is designed to determine uniquely the elemental, isotopic, and ionic-charge composition of the solar wind, the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 kms–1 (protons) to 1280 kms–1 (Fe+8), and the composition, charge states as well as the 3-dimensional distribution functions of suprathermal ions, including interstellar pick-up He+, of energies up to 230 keV/e. The experiment consists of three instruments with a common Data Processing Unit. Each of the three instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made by SMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition SMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; and (vii) the physics of the pick-up process of interstellar He as well as lunar particles in the solar wind, and the isotopic composition of interstellar helium.  相似文献   

14.
15.
Five Years of Stereo Magnetospheric Imaging by TWINS   总被引:1,自引:0,他引:1  
Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is the first stereoscopic magnetospheric imager. TWINS is a NASA Explorer Mission of Opportunity performing simultaneous energetic neutral atom (ENA) imaging from two widely-separated Molniya orbits on two different spacecraft, and providing nearly continuous coverage of magnetospheric ENA emissions. The ENA imagers observe energetic neutrals produced from global ion populations, over a broad energy range (1–100 keV/u) with high angular (4°×4°) and time (about 1-minute) resolution. TWINS distinguishes hydrogen ENAs from oxygen ENAs. Each TWINS spacecraft also carries a Lyman-α geocoronal imager to monitor the cold exospheric hydrogen atoms that produce ENAs from ions via charge exchange. Complementing the imagers are detectors that measure the local charged particle environment around the spacecraft. During its first five years of science operations, TWINS has discovered new global properties of geospace plasmas and neutrals, fostered understanding of causal relationships, confirmed theories and predictions based on in situ data, and yielded key insights needed to improve geospace models. Analysis and modeling of TWINS data have: (1) obtained continuous (main phase through recovery) global ion spectra, (2) revealed a previously unknown local-time dependence of global pitch angle, (3) developed quantitative determination of ion fluxes from low altitude ENAs (4) determined dynamic connections between local pitch angle and global ion precipitation, (5) confirmed local-time dependence of precipitating ion temperature, (6) imaged global dynamic heating of the magnetosphere, (7) explained why the oxygen ring current survives longer into recovery than hydrogen, and (8) revealed new global exospheric density features and their influence upon ring current decay rates. Over the next several years of the solar cycle, TWINS observations of three-dimensional (3D) global ion dynamics, composition, origins and destinies are crucial to capture the system-level view of geospace over the full range of geomagnetic and solar activity conditions.  相似文献   

16.
离子发动机加速栅极腐蚀深度的DFF测量与数值模拟   总被引:2,自引:2,他引:0  
使用聚焦深度表面测量(DFF)方法对加速栅极下游表面腐蚀深度进行了测量,并将测量结果与数值模拟结果进行了比较,所使用的数值方法为PIC-Monte Carlo方法.利用数值模拟程序对离子发动机栅极腐蚀进行了数值模拟.以氙为推进剂,栅极材料为钼.用蒙特卡罗方法模拟了氙离子与中性氙原子之间的电荷交换碰撞.模拟得到了加速栅极下游表面离子溅射腐蚀的深度分布,腐蚀模式与"Pits and grooves"模式相吻合.   相似文献   

17.
The “classic” anomalous cosmic ray (ACR) component originates as interstellar neutral atoms that drift into the heliosphere, become ionized and picked up by the solar wind, and carried to the outer heliosphere where the pickup ions are accelerated to hundreds of MeV, presumably at the solar wind termination shock. These interstellar ACRs are predominantly singly charged, although higher charge states are present and become dominant above ~350 MeV. Their isotopic composition is like that of the solar system and unlike that of the source of galactic cosmic rays. A comparison of their energy spectra with the estimated flux of pickup ions flowing into the termination shock reveals a mass-dependent acceleration efficiency that favors heavier ions. There is also a heliospheric ACR component as evidenced by “minor” ACR ions, such as Na, Mg, S, and Si that appear to be singly-ionized ions from a source likely in the outer heliosphere.  相似文献   

18.
Terrestrial planets are accreted in a disk orbiting a central star. The basic challenge of their formation consists of assembling micron-sized or smaller dust grains to bodies with over 104 km in diameter. This formation process, ultimately based on collisions, occurs in three very different physical regimes depending upon the size of the bodies present: 1) Early on, micron- to mm-sized dust grains, chondrules and chondrites are strongly coupled to the gas. 2) As they grow larger, gravity increases the collisional cross section allowing runaway growth to occur. 3) After this runaway phase stops from exhaustion of matter in the immediate surroundings of the protoplanets, further growth occurs on timescales typical of mutual gravitational perturbations. The emphasis of this book is on the timescales corresponding to these formation phases as well as the characteristic chemical and isotopic composition of the bodies involved. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).  相似文献   

20.
为了对离子推力器束流中双荷离子比例进行快速评估,采用放电室经验理论模型通过实验参数获得放电室等离子体参数,根据单、双荷氙离子的不同产生过程,计算得到束流中双/单荷离子密度比.针对兰州空间技术物理研究所20cm氙离子推力器进行了实验,使用E×B探针束流诊断系统获取了束流中双/单荷离子的平均比率.结果表明:在额定工况下理论计算值为0.071与测试结果为0.077符合良好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号