首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

2.
This review focuses on the conditions for -ray line production in the most interesting astronomical objects, in light of the planned experiments: Gamma-1, GRO, Sigma, GRASP, and others. Among these objects are the Sun, the galactic center region, molecular and dust clouds, accreting and exploding stars.  相似文献   

3.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

4.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

5.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

6.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

7.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

8.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

9.
Three-dimensional distributions for 24.0–44.5 keV protons (ions) are presented from the ISEE-1 medium energy particles instrument during a magnetopause traversal at 01:10 UT on 20 November 1977. Local time of the traversal was 1030. Ion fluxes were observed coming generally from the subsolar region, but over a wide range of latitudes. Enhanced fluxes were observed at the magnetopause crossing with strong components from the subsolar region and from the +Z SE direction. These observations are compared with the simultaneous electric field observations presented by Mozer et al. (1978). Ion streaming in a direction consistent with the Y-component of the drift velocity was observed whereas streaming along the X and Z-components is not seen. Based on energy arguments we conclude that in this case, 24 keV ions are not the major energy carrier of the locally measured · dissipation.  相似文献   

10.
Gamow was one of the pioneers who studied the possible variability of fundamental physical constants. Some versions of modern Grand Unification theories do predict such variability. The paper is concerned with three of the constants: the fine-structure constant , the ratio of the proton massm p to the electron massm e, and the ratio of the neutron massm n tom e. It is shown on the basis of the quasar spectra analysis, that all the three constants revealed no statistically significant variation over the last 90% of the life time of the Universe. At the 2 significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshiftsz2–3: /<1.5×10–3, m p/m p<2×10–3, and m/m<3×10–4, where x is a possible deviation of a quantityx from its present value,m=m p+m n, and the nucleon masses are in units ofm e. (According to new observational data which became known most recently, m p/m p<2×10–4) In addition a possible anisotropy of the high-redshift fine splitting over the celestial sphere is checked. Within the relative statistical error 3 < 1% the values of turned out to be the same in various quadrants of the celestial sphere, which corresponds to their equality in causally disconnected areas. However, at the 2 level a tentative anisotropy of estimated / values is found in directions that approximately coincide with the direction of the relic microwave background anisotropy.The revealed constraints serve as criteria for selection of those theoretical models which predict variation of ,m p orm n with the cosmological time.  相似文献   

11.
Much verified information has been accumulated in recent years which shows that many fundamental concepts involving classical physics, thermodynamics, astrophysics and the general theory of relativity are strongly coupled together. This evidence is employed in this paper to explain the principles of the astrophysical school of thermodynamics; a growing revolutionary school which deduces thermodynamics, energy dissipation, and time unisotropies from the Newtonian and Einsteinian theories of gravitation and from the dynamics of radiation in unsaturable (intercluster) space. Accordingly the density of radiation and the dynamics of (unsaturable) outer space affect all processes in the galactic media, in the solar system, in the magnetosphere and on Earth.The origin of all observed irreversibilities in nature — of time, of all time anisotropics, of energy dissipation, of T-violations in elementary particles, of retarded potentials in electrodynamics, of the biological clocks, and of biological arrows of time — is one; it is the radiation unsaturability of space. But since this unsaturability and gravitation are interconnected we explain the origin of asymmetries, structure, and thermodynamics within the frameworks of the Newtonian and Einsteinian theories of gravitation.The theory presented here forms a part of a more general approach called gravitism, which unifies some other disciplinary studies in the natural sciences with a unified approach to gravitation and the theory of time. [1].Gravitism is the general title which refers to the author's philosophy [1].  相似文献   

12.
There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies). The first one, referred to as the `two-component scenario, invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf–Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario, envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.  相似文献   

13.
The penetration of fast electrons ( 5 keV) into an artificial magnetosphere and their precipitation on the terrella surface is investigated. These fast electrons act as radioactive tracers allowing the experimental determination of the global picture of plasma flow around the magnetosphere and its intrusion into the latter. Two different zones of precipitation are observed, distinctly separated on the day-side and merging into each other on the night-side. The high latitude penetration region on the day-side is not localized around the neutral points, but is stretched in longitude forming polar cusps toward dusk and dawn. The lower latitude precipitation zone, embracing the whole terrella is due to the particle precipitation from a radiation belt formed in this experiment. The source of these belt particles seems to be located in the plasmasheet on the night side. Besides the polar cusps, a plasma intrusion from the sides of the magnetosphere in the equatorial region is observed. This equatorial gap, originating on the day-side, is gradually transformed into the plasmasheet in the magnetospheric tail. On the basis of these experimental data a model of the magnetosphere is discussed.  相似文献   

14.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

15.
The project for a Grazing Incidence Solar Telescope (GRIST) offers, for the first time, the combinations of high spatial (1) and spectral resolution in the extreme-ultraviolet wavelength range. The 3-dimensional electron density and temperature structure of the transition region and corona will be determined. The dynamics of the structures which make up the corona will be studied. GRIST can be expected to provide definitive improvement in the understanding of the coronal heating problem.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

16.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

17.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

18.
The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E 28 keV) and electron (E 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of tracer ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock ( 22 MeV for protons, 220 MeV for oxygen), the saturation in energy gain to 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.  相似文献   

19.
A technique to derive the coronal density irregularity factor , wheren is the electron density, has been proposed by Fineschi and Romoli (1993). This technique will exploit the unique UVCS capability of cotemporal and cospatial measurements of both UV line radiation and K-coronal polarized brightness,pB.The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisional component of the Ly-. This component yields an estimate of . The quantity is then obtained from the UVCS white-light K-coronal measurements.We present simulated observations of the UVCS for coronal atmosphere models with different filling factors and electron density profiles, and for different coronal structures (e.g., coronal holes, streamers). These simulations will show how the proposed technique may be used to probe inhomogeneities of the solar corona.  相似文献   

20.
High spatial (1) and temporal (20 s) resolution UV spectroscopy of the Sun has been carried out with a new instrument flown on sounding rockets. These observations reveal a multitude of new highly energetic phenomena in the outer solar atmosphere which may play a decisive rôle in the mechanical energy balance of the chromosphere, transition zone and corona.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号